@ -267,6 +267,7 @@ module Fml : sig
| Gt0 of trm (* * [Gt0 ( x ) ] iff x > 0 *)
| Le0 of trm (* * [Le0 ( x ) ] iff x ≤ 0 *)
(* propositional connectives *)
| Not of fml
| And of fml * fml
| Or of fml * fml
| Iff of fml * fml
@ -303,6 +304,7 @@ end = struct
| Dq0 of trm
| Gt0 of trm
| Le0 of trm
| Not of fml
| And of fml * fml
| Or of fml * fml
| Iff of fml * fml
@ -385,10 +387,11 @@ end = struct
let _ UPosLit p xs = UPosLit ( p , xs )
let _ UNegLit p xs = UNegLit ( p , xs )
let is_negative = function
let rec is_negative = function
| Ff | Dq _ | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
| Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ ->
false
| Not p -> not ( is_negative p )
type equal_or_opposite = Equal | Opposite | Unknown
@ -481,6 +484,7 @@ end = struct
| Dq0 x -> _ Eq0 x
| Gt0 x -> _ Le0 x
| Le0 x -> _ Gt0 x
| Not x -> x
| And ( x , y ) -> _ Or ( _ Not x ) ( _ Not y )
| Or ( x , y ) -> _ And ( _ Not x ) ( _ Not y )
| Iff ( x , y ) -> _ Xor x y
@ -559,6 +563,7 @@ let ppx_f strength fs fml =
| Dq0 x -> pf " (0 @<2>≠ %a) " pp_t x
| Gt0 x -> pf " (0 < %a) " pp_t x
| Le0 x -> pf " (0 @<2>≥ %a) " pp_t x
| Not x -> pf " @<1>¬%a " pp x
| And ( x , y ) -> pf " (%a@ @<2>∧ %a) " pp x pp y
| Or ( x , y ) -> pf " (%a@ @<2>∨ %a) " pp x pp y
| Iff ( x , y ) -> pf " (%a@ <=> %a) " pp x pp y
@ -614,6 +619,7 @@ let rec fold_vars_f ~init p ~f =
| Tt | Ff -> init
| Eq ( x , y ) | Dq ( x , y ) -> fold_vars_t ~ f x ~ init : ( fold_vars_t ~ f y ~ init )
| Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~ f x ~ init
| Not x -> fold_vars_f ~ f x ~ init
| And ( x , y ) | Or ( x , y ) | Iff ( x , y ) | Xor ( x , y ) ->
fold_vars_f ~ f x ~ init : ( fold_vars_f ~ f y ~ init )
| Cond { cnd ; pos ; neg } ->
@ -665,6 +671,7 @@ let rec map_trms_f ~f b =
| Dq0 x -> map1 f b _ Dq0 x
| Gt0 x -> map1 f b _ Gt0 x
| Le0 x -> map1 f b _ Le0 x
| Not x -> map1 ( map_trms_f ~ f ) b _ Not x
| And ( x , y ) -> map2 ( map_trms_f ~ f ) b _ And x y
| Or ( x , y ) -> map2 ( map_trms_f ~ f ) b _ Or x y
| Iff ( x , y ) -> map2 ( map_trms_f ~ f ) b _ Iff x y
@ -1039,6 +1046,7 @@ module Formula = struct
| Dq0 x -> lift_map1 f b _ Dq0 x
| Gt0 x -> lift_map1 f b _ Gt0 x
| Le0 x -> lift_map1 f b _ Le0 x
| Not x -> map1 ( map_terms ~ f ) b _ Not x
| And ( x , y ) -> map2 ( map_terms ~ f ) b _ And x y
| Or ( x , y ) -> map2 ( map_terms ~ f ) b _ Or x y
| Iff ( x , y ) -> map2 ( map_terms ~ f ) b _ Iff x y
@ -1070,7 +1078,7 @@ module Formula = struct
let rec add_conjunct ( cjn , splits ) fml =
match fml with
| Tt | Ff | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _
| Xor _ | UPosLit _ | UNegLit _ ->
| Xor _ | UPosLit _ | UNegLit _ | Not _ ->
( meet1 fml cjn , splits )
| And ( p , q ) -> add_conjunct ( add_conjunct ( cjn , splits ) p ) q
| Or ( p , q ) -> ( cjn , [ p ; q ] :: splits )
@ -1149,6 +1157,7 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Dq0 x -> Ses . Term . dq Ses . Term . zero ( t_to_ses x )
| Gt0 x -> Ses . Term . lt Ses . Term . zero ( t_to_ses x )
| Le0 x -> Ses . Term . le ( t_to_ses x ) Ses . Term . zero
| Not p -> Ses . Term . not_ ( f_to_ses p )
| And ( p , q ) -> Ses . Term . and_ ( f_to_ses p ) ( f_to_ses q )
| Or ( p , q ) -> Ses . Term . or_ ( f_to_ses p ) ( f_to_ses q )
| Iff ( p , q ) -> Ses . Term . eq ( f_to_ses p ) ( f_to_ses q )