[sledge] Add negation formula

Summary:
Add a negation formula that will be used on atomic formulas instead of
ensuring the set of literals is closed under negation. This is in
preparation for more efficient negation and negation-normal form
preservation, which explicitly tracks whether literals are positive or
negative.

Reviewed By: ngorogiannis

Differential Revision: D24306055

fbshipit-source-id: 9300d6aee
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 7b82ab17bf
commit 474bd68fca

@ -267,6 +267,7 @@ module Fml : sig
| Gt0 of trm (** [Gt0(x)] iff x > 0 *)
| Le0 of trm (** [Le0(x)] iff x ≤ 0 *)
(* propositional connectives *)
| Not of fml
| And of fml * fml
| Or of fml * fml
| Iff of fml * fml
@ -303,6 +304,7 @@ end = struct
| Dq0 of trm
| Gt0 of trm
| Le0 of trm
| Not of fml
| And of fml * fml
| Or of fml * fml
| Iff of fml * fml
@ -385,10 +387,11 @@ end = struct
let _UPosLit p xs = UPosLit (p, xs)
let _UNegLit p xs = UNegLit (p, xs)
let is_negative = function
let rec is_negative = function
| Ff | Dq _ | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true
| Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ ->
false
| Not p -> not (is_negative p)
type equal_or_opposite = Equal | Opposite | Unknown
@ -481,6 +484,7 @@ end = struct
| Dq0 x -> _Eq0 x
| Gt0 x -> _Le0 x
| Le0 x -> _Gt0 x
| Not x -> x
| And (x, y) -> _Or (_Not x) (_Not y)
| Or (x, y) -> _And (_Not x) (_Not y)
| Iff (x, y) -> _Xor x y
@ -559,6 +563,7 @@ let ppx_f strength fs fml =
| Dq0 x -> pf "(0 @<2>≠ %a)" pp_t x
| Gt0 x -> pf "(0 < %a)" pp_t x
| Le0 x -> pf "(0 @<2>≥ %a)" pp_t x
| Not x -> pf "@<1>¬%a" pp x
| And (x, y) -> pf "(%a@ @<2>∧ %a)" pp x pp y
| Or (x, y) -> pf "(%a@ @<2> %a)" pp x pp y
| Iff (x, y) -> pf "(%a@ <=> %a)" pp x pp y
@ -614,6 +619,7 @@ let rec fold_vars_f ~init p ~f =
| Tt | Ff -> init
| Eq (x, y) | Dq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init)
| Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init
| Not x -> fold_vars_f ~f x ~init
| And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) ->
fold_vars_f ~f x ~init:(fold_vars_f ~f y ~init)
| Cond {cnd; pos; neg} ->
@ -665,6 +671,7 @@ let rec map_trms_f ~f b =
| Dq0 x -> map1 f b _Dq0 x
| Gt0 x -> map1 f b _Gt0 x
| Le0 x -> map1 f b _Le0 x
| Not x -> map1 (map_trms_f ~f) b _Not x
| And (x, y) -> map2 (map_trms_f ~f) b _And x y
| Or (x, y) -> map2 (map_trms_f ~f) b _Or x y
| Iff (x, y) -> map2 (map_trms_f ~f) b _Iff x y
@ -1039,6 +1046,7 @@ module Formula = struct
| Dq0 x -> lift_map1 f b _Dq0 x
| Gt0 x -> lift_map1 f b _Gt0 x
| Le0 x -> lift_map1 f b _Le0 x
| Not x -> map1 (map_terms ~f) b _Not x
| And (x, y) -> map2 (map_terms ~f) b _And x y
| Or (x, y) -> map2 (map_terms ~f) b _Or x y
| Iff (x, y) -> map2 (map_terms ~f) b _Iff x y
@ -1070,7 +1078,7 @@ module Formula = struct
let rec add_conjunct (cjn, splits) fml =
match fml with
| Tt | Ff | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _
|Xor _ | UPosLit _ | UNegLit _ ->
|Xor _ | UPosLit _ | UNegLit _ | Not _ ->
(meet1 fml cjn, splits)
| And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q
| Or (p, q) -> (cjn, [p; q] :: splits)
@ -1149,6 +1157,7 @@ let rec f_to_ses : fml -> Ses.Term.t = function
| Dq0 x -> Ses.Term.dq Ses.Term.zero (t_to_ses x)
| Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x)
| Le0 x -> Ses.Term.le (t_to_ses x) Ses.Term.zero
| Not p -> Ses.Term.not_ (f_to_ses p)
| And (p, q) -> Ses.Term.and_ (f_to_ses p) (f_to_ses q)
| Or (p, q) -> Ses.Term.or_ (f_to_ses p) (f_to_ses q)
| Iff (p, q) -> Ses.Term.eq (f_to_ses p) (f_to_ses q)

Loading…
Cancel
Save