@ -16,6 +16,7 @@ type operand = LiteralOperand of IntLit.t | AbstractValueOperand of Var.t
that could result in discovering something is unsatisfiable * )
type ' a normalized = Unsat | Sat of ' a
(* * {!Q} from zarith with a few convenience functions added *)
module Q = struct
include Q
@ -38,7 +39,7 @@ module Q = struct
let to_bigint q = conv_protect Q . to_bigint q
end
(* * Linear Arithmetic *)
(* * Linear Arithmetic *)
module LinArith : sig
(* * linear combination of variables, eg [2·x + 3/4·y + 12] *)
type t [ @@ deriving compare ]
@ -77,9 +78,9 @@ module LinArith : sig
val get_variables : t -> Var . t Seq . t
val fold_ map _variables : t -> init : ' a -> f : ( ' a -> Var . t -> ' a * subst_target ) -> ' a * t
val fold_ subst _variables : t -> init : ' a -> f : ( ' a -> Var . t -> ' a * subst_target ) -> ' a * t
val map _variables : t -> f : ( Var . t -> subst_target ) -> t
val subst _variables : t -> f : ( Var . t -> subst_target ) -> t
end = struct
(* * invariant: the representation is always "canonical": coefficients cannot be [Q.zero] *)
type t = Q . t Var . Map . t * Q . t [ @@ deriving compare ]
@ -179,7 +180,7 @@ end = struct
let of_subst_target = function QSubst q -> of_q q | VarSubst v -> of_var v | LinSubst l -> l
let fold_ map _variables ( ( vs_foreign , c ) as l0 ) ~ init ~ f =
let fold_ subst _variables ( ( vs_foreign , c ) as l0 ) ~ init ~ f =
let changed = ref false in
let acc_f , l' =
Var . Map . fold
@ -194,7 +195,7 @@ end = struct
( acc_f , l' )
let map_variables l ~ f = fold_map _variables l ~ init : () ~ f : ( fun () v -> ( () , f v ) ) | > snd
let subst_variables l ~ f = fold_subst _variables l ~ init : () ~ f : ( fun () v -> ( () , f v ) ) | > snd
let get_variables ( vs , _ ) = Var . Map . to_seq vs | > Seq . map fst
end
@ -393,32 +394,13 @@ module Term = struct
let t' =
if phys_equal t_not t_not' then t
else
match t with
match [ @ warning " -8 " ] t with
| Minus _ ->
Minus t_not'
| BitNot _ ->
BitNot t_not'
| Not _ ->
Not t_not'
| Var _
| Const _
| Linear _
| Add _
| Mult _
| Div _
| Mod _
| BitAnd _
| BitOr _
| BitShiftLeft _
| BitShiftRight _
| BitXor _
| And _
| Or _
| LessThan _
| LessEqual _
| Equal _
| NotEqual _ ->
assert false
in
( acc , t' )
| Add ( t1 , t2 )
@ -441,7 +423,7 @@ module Term = struct
let t' =
if phys_equal t1 t1' && phys_equal t2 t2' then t
else
match t with
match [ @ warning " -8 " ] t with
| Add _ ->
Add ( t1' , t2' )
| Mult _ ->
@ -472,8 +454,6 @@ module Term = struct
Equal ( t1' , t2' )
| NotEqual _ ->
NotEqual ( t1' , t2' )
| Var _ | Const _ | Linear _ | Minus _ | BitNot _ | Not _ ->
assert false
in
( acc , t' )
@ -482,27 +462,27 @@ module Term = struct
fold_map_direct_subterms t ~ init : () ~ f : ( fun () t' -> ( () , f t' ) ) | > snd
let rec fold_ map _variables t ~ init ~ f =
let rec fold_ subst _variables t ~ init ~ f =
match t with
| Var v ->
let acc , op = f init v in
let t' = match op with VarSubst v' when Var . equal v v' -> t | _ -> of_subst_target op in
( acc , t' )
| Linear l ->
let acc , l' = LinArith . fold_ map _variables l ~ init ~ f in
let acc , l' = LinArith . fold_ subst _variables l ~ init ~ f in
let t' = if phys_equal l l' then t else Linear l' in
( acc , t' )
| _ ->
fold_map_direct_subterms t ~ init ~ f : ( fun acc t' -> fold_ map _variables t' ~ init : acc ~ f )
fold_map_direct_subterms t ~ init ~ f : ( fun acc t' -> fold_ subst _variables t' ~ init : acc ~ f )
let fold_variables t ~ init ~ f =
fold_ map _variables t ~ init ~ f : ( fun acc v -> ( f acc v , VarSubst v ) ) | > fst
fold_ subst _variables t ~ init ~ f : ( fun acc v -> ( f acc v , VarSubst v ) ) | > fst
let iter_variables t ~ f = fold_variables t ~ init : () ~ f : ( fun () v -> f v )
let map_variables t ~ f = fold_map _variables t ~ init : () ~ f : ( fun () v -> ( () , f v ) ) | > snd
let subst_variables t ~ f = fold_subst _variables t ~ init : () ~ f : ( fun () v -> ( () , f v ) ) | > snd
let has_var_notin vars t =
Container . exists t ~ iter : iter_variables ~ f : ( fun v -> not ( Var . Set . mem v vars ) )
@ -934,10 +914,10 @@ module Atom = struct
t
let eval ( atom : t ) = map_terms atom ~ f : eval_term | > eval_atom
let eval atom = map_terms atom ~ f : eval_term | > eval_atom
let fold_ map _variables a ~ init ~ f =
fold_map_terms a ~ init ~ f : ( fun acc t -> Term . fold_ map _variables t ~ init : acc ~ f )
let fold_ subst _variables a ~ init ~ f =
fold_map_terms a ~ init ~ f : ( fun acc t -> Term . fold_ subst _variables t ~ init : acc ~ f )
let has_var_notin vars atom =
@ -1052,7 +1032,7 @@ end = struct
(* * substitute vars in [l] * once * with their linear form to discover more simplification
opportunities * )
let apply phi l =
LinArith . map _variables l ~ f : ( fun v ->
LinArith . subst _variables l ~ f : ( fun v ->
let repr = ( get_repr phi v :> Var . t ) in
match Var . Map . find_opt repr phi . linear_eqs with
| None ->
@ -1061,29 +1041,35 @@ end = struct
LinSubst l' )
let rec solve_eq ~ fuel t1 t2 phi =
LinArith . solve_eq t1 t2
> > = function None -> Sat phi | Some ( x , l ) -> merge_var_linarith ~ fuel x l phi
and merge_var_linarith ~ fuel v l phi =
let v = ( get_repr phi v :> Var . t ) in
let l = apply phi l in
match LinArith . get_as_var l with
| Some v' ->
merge_vars ~ fuel ( v :> Var . t ) v' phi
| None -> (
match Var . Map . find_opt ( v :> Var . t ) phi . linear_eqs with
| None ->
(* this is probably dodgy as nothing guarantees that [l] does not mention [v] *)
Sat { phi with linear_eqs = Var . Map . add ( v :> Var . t ) l phi . linear_eqs }
| Some l' ->
(* This is the only step that consumes fuel: discovering an equality [l = l']: because we
do not record these anywhere ( except when there consequence can be recorded as [ y =
l'' ] or [ y = y' ] , we could potentially discover the same equality over and over and
diverge otherwise * )
if fuel > 0 then solve_eq ~ fuel : ( fuel - 1 ) l l' phi
else (* [fuel = 0]: give up simplifying further for fear of diverging *) Sat phi )
let rec solve_normalized_eq ~ fuel l1 l2 phi =
LinArith . solve_eq l1 l2
> > = function
| None ->
Sat phi
| Some ( v , l ) -> (
match LinArith . get_as_var l with
| Some v' ->
merge_vars ~ fuel ( v :> Var . t ) v' phi
| None -> (
match Var . Map . find_opt ( v :> Var . t ) phi . linear_eqs with
| None ->
(* this can break the ( as a result non- ) invariant that variables in the domain of
[ linear_eqs ] do not appear in the range of [ linear_eqs ] * )
Sat { phi with linear_eqs = Var . Map . add ( v :> Var . t ) l phi . linear_eqs }
| Some l' ->
(* This is the only step that consumes fuel: discovering an equality [l = l']: because we
do not record these anywhere ( except when there consequence can be recorded as [ y =
l'' ] or [ y = y' ] , we could potentially discover the same equality over and over and
diverge otherwise . Or could we ? * )
(* [l'] is possibly not normalized w.r.t. the current [phi] so take this opportunity to
normalize it * )
if fuel > 0 then (
L . d_printfln " Consuming fuel solving linear equality (from %d) " fuel ;
solve_normalized_eq ~ fuel : ( fuel - 1 ) l ( apply phi l' ) phi )
else (
(* [fuel = 0]: give up simplifying further for fear of diverging *)
L . d_printfln " Ran out of fuel solving linear equality " ;
Sat phi ) ) )
and merge_vars ~ fuel v1 v2 phi =
@ -1097,9 +1083,11 @@ end = struct
(* new equality [v_old = v_new]: we need to update a potential [v_old = l] to be [v_new =
l ] , and if [ v_new = l' ] was known we need to also explore the consequences of [ l = l' ] * )
(* NOTE: we try to maintain the invariant that for all [x=l] in [phi.linear_eqs], [x ∉
vars ( l ) ] , because other Shostak techniques do so ( in fact , they impose a stricter
condition that the domain and the range of [ phi . linear_eqs ] mention distinct variables ) ,
but some other steps of the reasoning may break that . Not sure why we bother . * )
vars ( l ) ] . We also try to stay as close as possible ( without going back and re - normalizing
every linear equality every time we learn new equalities ) to the invariant that the
domain and the range of [ phi . linear_eqs ] mention distinct variables . This is to speed up
normalization steps : when the stronger invariant holds we can normalize in one step ( in
[ normalize_linear_eqs ] ) . * )
let v_new = ( v_new :> Var . t ) in
let phi , l_new =
match Var . Map . find_opt v_new phi . linear_eqs with
@ -1131,15 +1119,17 @@ end = struct
(* no need to consume fuel here as we can only go through this branch finitely many
times because there are finitely many variables in a given formula * )
(* TODO: we may want to keep the "simpler" representative for [v_new] between [l1] and [l2] *)
solve_ eq ~ fuel l1 l2 phi )
solve_ normalized_ eq ~ fuel l1 l2 phi )
(* * an arbitrary value *)
let fuel = 5
let base_fuel = 5
let solve_eq t1 t2 phi = solve_normalized_eq ~ fuel : base_fuel ( apply phi t1 ) ( apply phi t2 ) phi
let and_var_linarith v l phi = solve_eq ~ fuel l ( LinArith . of_var v ) phi
let and_var_linarith v l phi = solve_eq l ( LinArith . of_var v ) phi
let and_var_var v1 v2 phi = merge_vars ~ fuel v1 v2 phi
let and_var_var v1 v2 phi = merge_vars ~ fuel : base_fuel v1 v2 phi
let rec normalize_linear_eqs ~ fuel phi0 =
let * changed , phi' =
@ -1155,18 +1145,18 @@ end = struct
in
if changed then
if fuel > 0 then (
L . d_printfln " going around one more time normalizing the linear equalities " ;
(* do another pass if we can affort it *)
(* do another pass if we can afford it *)
L . d_printfln " consuming fuel normalizing linear equalities (from %d) " fuel ;
normalize_linear_eqs ~ fuel : ( fuel - 1 ) phi' )
else (
L . d_printfln " ran out of fuel normalizing the linear equalities" ;
L . d_printfln " ran out of fuel normalizing linear equalities" ;
Sat phi' )
else Sat phi0
let normalize_atom phi ( atom : Atom . t ) =
let normalize_term phi t =
Term . map _variables t ~ f : ( fun v ->
Term . subst _variables t ~ f : ( fun v ->
let v_canon = ( VarUF . find phi . var_eqs v :> Var . t ) in
match Var . Map . find_opt v_canon phi . linear_eqs with
| None ->
@ -1187,7 +1177,7 @@ end = struct
(* NOTE: {!normalize_atom} calls {!Atom.eval}, which normalizes linear equalities so
they end up only on one side , hence only this match case is needed to detect linear
equalities * )
solve_eq ~ fuel l ( LinArith . of_q c ) phi
solve_eq l ( LinArith . of_q c ) phi
| Some atom' ->
Sat { phi with atoms = Atom . Set . add atom' phi . atoms }
@ -1200,7 +1190,7 @@ end = struct
and_atom atom phi )
let normalize phi = normalize_linear_eqs ~ fuel phi > > = normalize_atoms
let normalize phi = normalize_linear_eqs ~ fuel : base_fuel phi > > = normalize_atoms
end
let and_mk_atom mk_atom op1 op2 phi =
@ -1232,7 +1222,11 @@ let prune_binop ~negated (bop : Binop.t) x y phi =
let normalize phi = Normalizer . normalize phi
(* * translate each variable in [phi_foreign] according to [f] then incorporate each fact into [phi0] *)
let and_fold_map_variables phi0 ~ up_to_f : phi_foreign ~ init ~ f =
let and_fold_subst_variables phi0 ~ up_to_f : phi_foreign ~ init ~ f : f_var =
let f_subst acc v =
let acc' , v' = f_var acc v in
( acc' , VarSubst v' )
in
(* propagate [Unsat] faster using this exception *)
let exception Contradiction in
let sat_value_exn ( norm : ' a normalized ) =
@ -1241,33 +1235,25 @@ let and_fold_map_variables phi0 ~up_to_f:phi_foreign ~init ~f =
let and_var_eqs acc =
VarUF . fold_congruences phi_foreign . var_eqs ~ init : acc
~ f : ( fun ( acc_f , phi ) ( repr_foreign , vs_foreign ) ->
let acc_f , repr = f acc_f ( repr_foreign :> Var . t ) in
let acc_f , repr = f _var acc_f ( repr_foreign :> Var . t ) in
IContainer . fold_of_pervasives_set_fold Var . Set . fold vs_foreign ~ init : ( acc_f , phi )
~ f : ( fun ( acc_f , phi ) v_foreign ->
let acc_f , v = f acc_f v_foreign in
let acc_f , v = f _var acc_f v_foreign in
let phi = Normalizer . and_var_var repr v phi | > sat_value_exn in
( acc_f , phi ) ) )
in
let and_linear_eqs acc =
IContainer . fold_of_pervasives_map_fold Var . Map . fold phi_foreign . linear_eqs ~ init : acc
~ f : ( fun ( acc_f , phi ) ( v_foreign , l_foreign ) ->
let acc_f , v = f acc_f v_foreign in
let acc_f , l =
LinArith . fold_map_variables l_foreign ~ init : acc_f ~ f : ( fun acc v ->
let acc' , v' = f acc v in
( acc' , VarSubst v' ) )
in
let acc_f , v = f_var acc_f v_foreign in
let acc_f , l = LinArith . fold_subst_variables l_foreign ~ init : acc_f ~ f : f_subst in
let phi = Normalizer . and_var_linarith v l phi | > sat_value_exn in
( acc_f , phi ) )
in
let and_atoms acc =
IContainer . fold_of_pervasives_set_fold Atom . Set . fold phi_foreign . atoms ~ init : acc
~ f : ( fun ( acc_f , phi ) atom_foreign ->
let acc_f , atom =
Atom . fold_map_variables atom_foreign ~ init : acc_f ~ f : ( fun acc_f v ->
let acc_f , v' = f acc_f v in
( acc_f , VarSubst v' ) )
in
let acc_f , atom = Atom . fold_subst_variables atom_foreign ~ init : acc_f ~ f : f_subst in
let phi = Normalizer . and_atom atom phi | > sat_value_exn in
( acc_f , phi ) )
in