[cost] Ignore boundends when getting range

Summary: This diff ignores boundends when getting the value range.

Reviewed By: ezgicicek

Differential Revision: D17114363

fbshipit-source-id: cca8745e3
master
Sungkeun Cho 5 years ago committed by Facebook Github Bot
parent a18e22ef7f
commit 5127a975e3

@ -150,16 +150,22 @@ module SymLinear = struct
fun x -> match get_mone_symbol_opt x with Some _ -> true | None -> false
let is_one_symbol_of : Symb.Symbol.t -> t -> bool =
fun s x -> Option.exists (get_one_symbol_opt x) ~f:(fun s' -> Symb.Symbol.equal s s')
let is_one_symbol_of_common get_symbol_opt ?(weak = false) s x =
Option.exists (get_symbol_opt x) ~f:(fun s' ->
(if weak then Symb.Symbol.paths_equal else Symb.Symbol.equal) s s' )
let is_mone_symbol_of : Symb.Symbol.t -> t -> bool =
fun s x -> Option.exists (get_mone_symbol_opt x) ~f:(fun s' -> Symb.Symbol.equal s s')
let is_one_symbol_of : ?weak:bool -> Symb.Symbol.t -> t -> bool =
is_one_symbol_of_common get_one_symbol_opt
let is_signed_one_symbol_of : Sign.t -> Symb.Symbol.t -> t -> bool =
fun sign s x -> match sign with Plus -> is_one_symbol_of s x | Minus -> is_mone_symbol_of s x
let is_mone_symbol_of : ?weak:bool -> Symb.Symbol.t -> t -> bool =
is_one_symbol_of_common get_mone_symbol_opt
let is_signed_one_symbol_of : weak:bool -> Sign.t -> Symb.Symbol.t -> t -> bool =
fun ~weak sign s x ->
match sign with Plus -> is_one_symbol_of ~weak s x | Minus -> is_mone_symbol_of ~weak s x
let get_symbols : t -> Symb.SymbolSet.t =
@ -797,8 +803,8 @@ module Bound = struct
fun x -> match x with Linear (c, y) when SymLinear.is_zero y -> Some c | _ -> None
let plus_exact : otherwise:(t -> t -> t) -> t -> t -> t =
fun ~otherwise x y ->
let plus_exact : weak:bool -> otherwise:(t -> t -> t) -> t -> t -> t =
fun ~weak ~otherwise x y ->
if is_zero x then y
else if is_zero y then x
else
@ -811,14 +817,14 @@ module Bound = struct
mk_MinMax (Z.(c1 + c2), sign, min_max, d1, x1)
| MinMax (c1, sign, min_max, d, x1), Linear (c2, x2)
| Linear (c2, x2), MinMax (c1, sign, min_max, d, x1)
when SymLinear.is_signed_one_symbol_of (Sign.neg sign) x1 x2 ->
when SymLinear.is_signed_one_symbol_of ~weak (Sign.neg sign) x1 x2 ->
let c = Sign.eval_big_int sign Z.(c1 + c2) d in
mk_MinMax (c, Sign.neg sign, MinMax.neg min_max, d, x1)
| _ ->
otherwise x y
let plus_l : t -> t -> t =
let plus_l : weak:bool -> t -> t -> t =
plus_exact ~otherwise:(fun x y ->
match (x, y) with
| MinMax (c1, Plus, Max, d1, _), Linear (c2, x2)
@ -831,7 +837,7 @@ module Bound = struct
MInf )
let plus_u : t -> t -> t =
let plus_u : weak:bool -> t -> t -> t =
plus_exact ~otherwise:(fun x y ->
match (x, y) with
| MinMax (c1, Plus, Min, d1, _), Linear (c2, x2)
@ -844,7 +850,12 @@ module Bound = struct
PInf )
let plus = function Symb.BoundEnd.LowerBound -> plus_l | Symb.BoundEnd.UpperBound -> plus_u
let plus = function
| Symb.BoundEnd.LowerBound ->
plus_l ~weak:false
| Symb.BoundEnd.UpperBound ->
plus_u ~weak:false
let mult_const : Symb.BoundEnd.t -> NonZeroInt.t -> t -> t =
fun bound_end n x ->

@ -86,9 +86,9 @@ module Bound : sig
val is_const : t -> Z.t sexp_option
val plus_l : t -> t -> t
val plus_l : weak:bool -> t -> t -> t
val plus_u : t -> t -> t
val plus_u : weak:bool -> t -> t -> t
val mult_const_l : Ints.NonZeroInt.t -> t -> t

@ -458,7 +458,7 @@ let mk_eval_sym_trace integer_type_widths callee_formals actual_exps caller_mem
let eval_sym ~mode s bound_end =
let sympath = Symb.Symbol.path s in
let itv, _ = eval_sympath ~mode params sympath caller_mem in
Symb.Symbol.assert_bound_end s bound_end ;
Symb.Symbol.check_bound_end s bound_end ;
Itv.get_bound itv bound_end
in
let trace_of_sym s =

@ -22,8 +22,8 @@ module ItvRange = struct
let of_bounds : loop_head_loc:Location.t -> lb:Bound.t -> ub:Bound.t -> t =
fun ~loop_head_loc ~lb ~ub ->
Bound.plus_u ub Bound.one
|> Bound.plus_u (Bound.neg lb)
Bound.plus_u ~weak:true ub Bound.one
|> Bound.plus_u ~weak:true (Bound.neg lb)
|> Bound.simplify_min_one |> Bound.simplify_bound_ends_from_paths
|> Bounds.NonNegativeBound.of_loop_bound loop_head_loc
@ -193,7 +193,9 @@ module ItvPure = struct
let lnot : t -> Boolean.t = fun x -> to_bool x |> Boolean.not_
let plus : t -> t -> t = fun (l1, u1) (l2, u2) -> (Bound.plus_l l1 l2, Bound.plus_u u1 u2)
let plus : t -> t -> t =
fun (l1, u1) (l2, u2) -> (Bound.plus_l ~weak:false l1 l2, Bound.plus_u ~weak:false u1 u2)
let minus : t -> t -> t = fun i1 i2 -> plus i1 (neg i2)

@ -322,8 +322,17 @@ module Symbol = struct
let path = function OneValue {path} | BoundEnd {path} -> path
let assert_bound_end s be =
match s with OneValue _ -> () | BoundEnd {bound_end} -> assert (BoundEnd.equal be bound_end)
(* NOTE: This may not be satisfied in the cost checker for simplifying its results. *)
let check_bound_end s be =
if Config.bo_debug >= 3 then
match s with
| OneValue _ ->
()
| BoundEnd {bound_end} ->
if not (BoundEnd.equal be bound_end) then
L.d_printfln_escaped
"Mismatch of symbol's boundend and its position: %a is in a place for %s." pp s
(BoundEnd.to_string be)
let exists_str ~f = function OneValue {path} | BoundEnd {path} -> SymbolPath.exists_str ~f path

@ -110,7 +110,7 @@ module Symbol : sig
val path : t -> SymbolPath.t
val assert_bound_end : t -> BoundEnd.t -> unit
val check_bound_end : t -> BoundEnd.t -> unit
type make_t = unsigned:bool -> ?boolean:bool -> SymbolPath.t -> t

Loading…
Cancel
Save