From 5acd64c22ee0de5cea109fd783dc3d7c7fba95ba Mon Sep 17 00:00:00 2001 From: Josh Berdine Date: Tue, 20 Oct 2020 11:39:59 -0700 Subject: [PATCH] [sledge] Remove disequality formula Summary: It is redundant with `Not Eq` Reviewed By: jvillard Differential Revision: D24306046 fbshipit-source-id: fbfba5c59 --- sledge/src/fol.ml | 32 ++++++-------------------------- 1 file changed, 6 insertions(+), 26 deletions(-) diff --git a/sledge/src/fol.ml b/sledge/src/fol.ml index a81600495..f9ba0169a 100644 --- a/sledge/src/fol.ml +++ b/sledge/src/fol.ml @@ -259,7 +259,6 @@ module Fml : sig | Tt (* equality *) | Eq of trm * trm - | Dq of trm * trm (* arithmetic *) | Eq0 of trm (** [Eq0(x)] iff x = 0 *) | Dq0 of trm (** [Dq0(x)] iff x ≠ 0 *) @@ -279,7 +278,6 @@ module Fml : sig val _Tt : fml val _Eq : trm -> trm -> fml - val _Dq : trm -> trm -> fml val _Eq0 : trm -> fml val _Dq0 : trm -> fml val _Gt0 : trm -> fml @@ -296,7 +294,6 @@ end = struct type fml = | Tt | Eq of trm * trm - | Dq of trm * trm | Eq0 of trm | Dq0 of trm | Gt0 of trm @@ -361,16 +358,6 @@ end = struct | SynLt -> Eq (x, y) | SynGt -> Eq (y, x) - let _Dq x y = - if x == zero then _Dq0 y - else if y == zero then _Dq0 x - else - match compare_semantic_syntactic x y with - | SemEq -> _Ff - | SemDq -> Tt - | SynLt -> Dq (x, y) - | SynGt -> Dq (y, x) - let _Gt0 = function | Z z -> if Z.gt z Z.zero then Tt else _Ff | Q q -> if Q.gt q Q.zero then Tt else _Ff @@ -385,7 +372,7 @@ end = struct let _UNegLit p xs = UNegLit (p, xs) let rec is_negative = function - | Not Tt | Dq _ | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true + | Not (Tt | Eq _) | Dq0 _ | Le0 _ | Or _ | Xor _ | UNegLit _ -> true | Tt | Eq _ | Eq0 _ | Gt0 _ | And _ | Iff _ | UPosLit _ | Cond _ -> false | Not p -> not (is_negative p) @@ -395,8 +382,6 @@ end = struct let rec equal_or_opposite p q = match (p, q) with | p, Not p' | Not p', p -> if equal_fml p p' then Opposite else Unknown - | Eq (a, b), Dq (a', b') | Dq (a, b), Eq (a', b') -> - if equal_trm a a' && equal_trm b b' then Opposite else Unknown | Eq0 a, Dq0 a' | Dq0 a, Eq0 a' | Gt0 a, Le0 a' | Le0 a, Gt0 a' -> if equal_trm a a' then Opposite else Unknown | And (a, b), Or (a', b') | Or (a', b'), And (a, b) -> ( @@ -473,8 +458,6 @@ end = struct Xor (p, q) ) and _Not = function - | Eq (x, y) -> _Dq x y - | Dq (x, y) -> _Eq x y | Eq0 x -> _Dq0 x | Dq0 x -> _Eq0 x | Gt0 x -> _Le0 x @@ -487,7 +470,7 @@ end = struct | Cond {cnd; pos; neg} -> _Cond cnd (_Not pos) (_Not neg) | UPosLit (p, xs) -> _UNegLit p xs | UNegLit (p, xs) -> _UPosLit p xs - | Tt as x -> Not x + | (Tt | Eq _) as x -> Not x and _Cond cnd pos neg = match (cnd, pos, neg) with @@ -554,7 +537,7 @@ let ppx_f strength fs fml = | Tt -> pf "tt" | Not Tt -> pf "ff" | Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y - | Dq (x, y) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y + | Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y | Eq0 x -> pf "(0 = %a)" pp_t x | Dq0 x -> pf "(0 @<2>≠ %a)" pp_t x | Gt0 x -> pf "(0 < %a)" pp_t x @@ -613,7 +596,7 @@ let rec fold_vars_t e ~init ~f = let rec fold_vars_f ~init p ~f = match (p : fml) with | Tt -> init - | Eq (x, y) | Dq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init) + | Eq (x, y) -> fold_vars_t ~f x ~init:(fold_vars_t ~f y ~init) | Eq0 x | Dq0 x | Gt0 x | Le0 x -> fold_vars_t ~f x ~init | Not x -> fold_vars_f ~f x ~init | And (x, y) | Or (x, y) | Iff (x, y) | Xor (x, y) -> @@ -662,7 +645,6 @@ let rec map_trms_f ~f b = match b with | Tt -> b | Eq (x, y) -> map2 f b _Eq x y - | Dq (x, y) -> map2 f b _Dq x y | Eq0 x -> map1 f b _Eq0 x | Dq0 x -> map1 f b _Dq0 x | Gt0 x -> map1 f b _Gt0 x @@ -972,7 +954,7 @@ module Formula = struct (* comparisons *) let eq = ap2f _Eq - let dq = ap2f _Dq + let dq a b = _Not (eq a b) let eq0 = ap1f _Eq0 let dq0 = ap1f _Dq0 let gt0 = ap1f _Gt0 @@ -1037,7 +1019,6 @@ module Formula = struct match b with | Tt -> b | Eq (x, y) -> lift_map2 f b _Eq x y - | Dq (x, y) -> lift_map2 f b _Dq x y | Eq0 x -> lift_map1 f b _Eq0 x | Dq0 x -> lift_map1 f b _Dq0 x | Gt0 x -> lift_map1 f b _Gt0 x @@ -1073,7 +1054,7 @@ module Formula = struct fun ~meet1 ~join1 ~top ~bot fml -> let rec add_conjunct (cjn, splits) fml = match fml with - | Tt | Eq _ | Dq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _ + | Tt | Eq _ | Eq0 _ | Dq0 _ | Gt0 _ | Le0 _ | Iff _ | Xor _ |UPosLit _ | UNegLit _ | Not _ -> (meet1 fml cjn, splits) | And (p, q) -> add_conjunct (add_conjunct (cjn, splits) p) q @@ -1148,7 +1129,6 @@ let rec f_to_ses : fml -> Ses.Term.t = function | Tt -> Ses.Term.true_ | Not Tt -> Ses.Term.false_ | Eq (x, y) -> Ses.Term.eq (t_to_ses x) (t_to_ses y) - | Dq (x, y) -> Ses.Term.dq (t_to_ses x) (t_to_ses y) | Eq0 x -> Ses.Term.eq Ses.Term.zero (t_to_ses x) | Dq0 x -> Ses.Term.dq Ses.Term.zero (t_to_ses x) | Gt0 x -> Ses.Term.lt Ses.Term.zero (t_to_ses x)