@ -5,16 +5,19 @@
* LICENSE file in the root directory of this source tree.
* )
(* P r o o f s a b o u t a s h a l l o w l y e m b e d d e d c o n c e p t o f l i v e v a r i a b l e s *)
(* D e f i n e S S A f o r m a n d t h e c o n c e p t o f v a r i a b l e l i v e n e s s , a n d t h e n s h o w h o w S S A
* simplifies it * )
open HolKernel boolLib bossLib Parse ;
open pred_setTheory ;
open pred_setTheory listTheory rich_listTheory ;
open settingsTheory miscTheory llvmTheory llvm_propTheory ;
new_theory " l l v m _ li v e " ;
new_theory " l l v m _ ss a " ;
numLib. prefer_num ( ) ;
(* - - - - - S t a t i c p a t h s t h r o u g h a p r o g r a m *)
Definition inc_pc_def :
inc_pc ip = ip with i := inc_bip ip. i
End
@ -28,6 +31,7 @@ Definition instr_next_ips_def:
( instr_next_ips ( Invoke _ _ _ _ l1 l2 ) ip =
{ <| f := ip. f ; b := Some l ; i := Phi_ip ip. b |> | l | l ∈ { l1 ; l2 } } ) ∧
( instr_next_ips Unreachable ip = { } ) ∧
( instr_next_ips Exit ip = { } ) ∧
( instr_next_ips ( Sub _ _ _ _ _ _ ) ip = { inc_pc ip } ) ∧
( instr_next_ips ( Extractvalue _ _ _ ) ip = { inc_pc ip } ) ∧
( instr_next_ips ( Insertvalue _ _ _ _ ) ip = { inc_pc ip } ) ∧
@ -76,6 +80,37 @@ Inductive good_path:
good_path prog ( ip1 :: ip2 :: path ) )
End
Theorem next_ips_same_func :
∀prog ip1 ip2. ip2 ∈ next_ips prog ip1 ⇒ ip1. f = ip2. f
Proof
rw [ next_ips_cases , IN_DEF , get_instr_cases , inc_pc_def , inc_bip_def ] >> rw [ ] >>
Cases_on ` el idx b. body ` >> fs [ instr_next_ips_def , inc_pc_def , inc_bip_def ]
QED
Theorem good_path_same_func :
∀prog path. good_path prog path ⇒ ∀ip1 ip2. mem ip1 path ∧ mem ip2 path ⇒ ip1. f = ip2. f
Proof
ho_match_mp_tac good_path_ind >> rw [ ] >>
metis_tac [ next_ips_same_func ]
QED
Theorem good_path_prefix :
∀prog path path'. good_path prog path ∧ path' ≼ path ⇒ good_path prog path'
Proof
Induct_on ` path' ` >> rw [ ]
>- simp [ Once good_path_cases ] >>
pop_assum mp_tac >> CASE_TAC >> rw [ ] >>
qpat_x_assum ` good_path _ _ ` mp_tac >>
simp [ Once good_path_cases ] >> rw [ ] >> fs [ ]
>- ( simp [ Once good_path_cases ] >> metis_tac [ ] ) >>
first_x_assum drule >> rw [ ] >>
simp [ Once good_path_cases ] >>
Cases_on ` path' ` >> fs [ next_ips_cases , IN_DEF ] >>
metis_tac [ ]
QED
(* - - - - - H e l p e r f u n c t i o n s t o g e t r e g i s t e r s o u t o f i n s t r u c t i o n s - - - - - *)
Definition arg_to_regs_def :
( arg_to_regs ( Constant _ ) = { } ) ∧
( arg_to_regs ( Variable r ) = { r } )
@ -169,6 +204,160 @@ Inductive assigns:
assigns prog ip r )
End
(* - - - - - S S A f o r m - - - - - *)
Definition entry_ip_def :
entry_ip fname = <| f := fname ; b := None ; i := Offset 0 |>
End
Definition reachable_def :
reachable prog ip ⇔
∃path. good_path prog ( entry_ip ip. f :: path ) ∧ last ( entry_ip ip. f :: path ) = ip
End
(* T o g e t t o i p 2 f r o m t h e e n t r y , y o u m u s t g o t h r o u g h i p 1 *)
Definition dominates_def :
dominates prog ip1 ip2 ⇔
∀path.
good_path prog ( entry_ip ip2. f :: path ) ∧
last ( entry_ip ip2. f :: path ) = ip2 ⇒
mem ip1 ( front ( entry_ip ip2. f :: path ) )
End
Definition is_ssa_def :
is_ssa prog ⇔
(* O p e r a t e f u n c t i o n b y f u n c t i o n *)
( ∀fname.
(* N o r e g i s t e r i s a s s i g n e d i n t w o d i f f e r e n t i n s t r u c t i o n s *)
( ∀r ip1 ip2.
r ∈ assigns prog ip1 ∧ r ∈ assigns prog ip2 ∧ ip1. f = fname ∧ ip2. f = fname
⇒
ip1 = ip2 ) ) ∧
(* E a c h u s e i s d o m i n a t e d b y i t s a s s i g n m e n t *)
( ∀ip1 r. r ∈ uses prog ip1 ⇒ ∃ip2. r ∈ assigns prog ip2 ∧ dominates prog ip2 ip1 )
End
Theorem dominates_trans :
∀prog ip1 ip2 ip3.
dominates prog ip1 ip2 ∧ dominates prog ip2 ip3 ⇒ dominates prog ip1 ip3
Proof
rw [ dominates_def ] >> simp [ FRONT_DEF ] >> rw [ ]
>- ( first_x_assum ( qspec_then ` [ ] ` mp_tac ) >> rw [ ] ) >>
first_x_assum drule >> rw [ ] >>
qpat_x_assum ` mem _ ( front _ ) ` mp_tac >>
simp [ Once MEM_EL ] >> rw [ ] >> fs [ EL_FRONT ] >>
first_x_assum ( qspec_then ` take n path ` mp_tac ) >> simp [ LAST_DEF ] >>
rw [ ] >> fs [ entry_ip_def ]
>- ( fs [ Once good_path_cases ] >> rw [ ] >> fs [ next_ips_cases , IN_DEF ] ) >>
rfs [ EL_CONS ] >>
`? m. n = Suc m ` by ( Cases_on ` n ` >> rw [ ] ) >>
rw [ ] >> rfs [ ] >>
` ( el m path ) .f = ip3. f `
by (
irule good_path_same_func >>
qexists_tac `<| f := ip3. f ; b := NONE ; i := Offset 0 |> :: path ` >>
qexists_tac ` prog ` >>
conj_tac >- rw [ EL_MEM ] >>
metis_tac [ MEM_LAST ] ) >>
fs [ ] >> qpat_x_assum ` _ ⇒ _ ` mp_tac >> impl_tac
>- (
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [ ] >>
metis_tac [ take_is_prefix ] ) >>
rw [ ] >> drule MEM_FRONT >> rw [ ] >>
fs [ MEM_EL , LENGTH_FRONT ] >> rfs [ EL_TAKE ] >> rw [ ] >>
disj2_tac >> qexists_tac ` n' ` >> rw [ ] >>
irule ( GSYM EL_FRONT ) >>
rw [ NULL_EQ , LENGTH_FRONT ]
QED
Theorem dominates_unreachable :
∀prog ip1 ip2. ¬reachable prog ip2 ⇒ dominates prog ip1 ip2
Proof
rw [ dominates_def , reachable_def ] >>
metis_tac [ ]
QED
Theorem dominates_antisym_lem :
∀prog ip1 ip2. dominates prog ip1 ip2 ∧ dominates prog ip2 ip1 ⇒ ¬reachable prog ip1
Proof
rw [ dominates_def , reachable_def ] >> CCONTR_TAC >> fs [ ] >>
Cases_on ` ip1 = entry_ip ip1. f ` >> fs [ ]
>- (
first_x_assum ( qspec_then ` [ ] ` mp_tac ) >> rw [ ] >>
fs [ Once good_path_cases , IN_DEF , next_ips_cases ] >>
metis_tac [ ] ) >>
` path ≠ [ ] ` by ( Cases_on ` path ` >> fs [ ] ) >>
` ( OLEAST n. n < length path ∧ el n path = ip1 ) ≠ None `
by (
rw [ whileTheory. OLEAST_EQ_NONE ] >>
qexists_tac ` PRE ( length path ) ` >> rw [ ] >>
fs [ LAST_DEF , LAST_EL ] >>
Cases_on ` path ` >> fs [ ] ) >>
qabbrev_tac ` path1 = splitAtPki ( \ n ip. ip = ip1 ) ( \ x y. x ) path ` >>
first_x_assum ( qspec_then ` path1 ++ [ ip1 ] ` mp_tac ) >>
simp [ ] >>
conj_asm1_tac >> rw [ ]
>- (
irule good_path_prefix >>
HINT_EXISTS_TAC >> rw [ ] >>
unabbrev_all_tac >> rw [ splitAtPki_EQN ] >>
CASE_TAC >> rw [ ] >>
fs [ whileTheory. OLEAST_EQ_SOME ] >>
rw [ GSYM SNOC_APPEND , SNOC_EL_TAKE ] >>
metis_tac [ take_is_prefix ] )
>- rw [ LAST_DEF ] >>
simp [ GSYM SNOC_APPEND , FRONT_SNOC , FRONT_DEF ] >>
CCONTR_TAC >> fs [ MEM_EL ]
>- (
first_x_assum ( qspec_then ` [ ] ` mp_tac ) >>
fs [ entry_ip_def , Once good_path_cases , IN_DEF , next_ips_cases ] >>
metis_tac [ ] ) >>
rw [ ] >>
rename [ ` n1 < length _ ` , ` last _ = el n path ` ] >>
first_x_assum ( qspec_then ` take ( Suc n1 ) path1 ` mp_tac ) >> rw [ ]
>- (
irule good_path_prefix >> HINT_EXISTS_TAC >> rw [ entry_ip_def ]
>- (
irule good_path_same_func >>
qexists_tac ` entry_ip ( el n path ) .f::(path1 ++ [ el n path ] ) ` >>
qexists_tac ` prog ` >> rw [ EL_MEM ] ) >>
metis_tac [ IS_PREFIX_APPEND3 , take_is_prefix , IS_PREFIX_TRANS ] )
>- ( rw [ LAST_DEF ] >> fs [ ] ) >>
rw [ METIS_PROVE [ ] ``~ x ∨ y ⇔ ( x ⇒ y ) `` ] >>
simp [ EL_FRONT ] >>
rename [ ` n2 < Suc _ ` ] >>
Cases_on ` ¬(0 < n2 ) ` >> rw [ EL_CONS ]
>- (
fs [ entry_ip_def ] >>
` ( el n path ) .f = ( el n1 path1 ) .f` suffices_by metis_tac [ ] >>
irule good_path_same_func >>
qexists_tac `<| f := ( el n path ) .f; b := None ; i := Offset 0 |> :: ( path1 ++ [ el n path ] ) ` >>
qexists_tac ` prog ` >>
rw [ EL_MEM ] ) >>
fs [ EL_TAKE , Abbr ` path1 ` , splitAtPki_EQN ] >>
CASE_TAC >> rw [ ] >> fs [ ]
>- metis_tac [ ] >>
fs [ whileTheory. OLEAST_EQ_SOME ] >>
rfs [ LENGTH_TAKE ] >>
` PRE n2 < x ` by decide_tac >>
first_x_assum drule >>
rw [ EL_TAKE ]
QED
Theorem dominates_antisym :
∀prog ip1 ip2. reachable prog ip1 ∧ dominates prog ip1 ip2 ⇒ ¬dominates prog ip2 ip1
Proof
metis_tac [ dominates_antisym_lem ]
QED
Theorem dominates_irrefl :
∀prog ip. reachable prog ip ⇒ ¬dominates prog ip ip
Proof
metis_tac [ dominates_antisym ]
QED
(* - - - - - L i v e n e s s - - - - - *)
Definition live_def :
live prog ip =
{ r | ∃path.
@ -177,21 +366,19 @@ Definition live_def:
∀ip2. ip2 ∈ set ( front ( ip :: path ) ) ⇒ r ∉ assigns prog ip2 }
End
(*
Theorem get_instr_live :
∀prog ip instr.
get_instr prog ip instr
⇒
uses instr ⊆ live prog ip
uses prog ip ⊆ live prog ip
Proof
rw [ live_def , SUBSET_DEF ] >>
qexists_tac ` [ ] ` >> rw [ Once good_path_cases ] >>
qexists_tac ` instr ` >> simp [ ] >> metis_tac [ IN_DEF ]
QED
* )
Triviality set_rw :
! s P. (! x. x ∈ s ⇔ P x ) ⇔ s = P
∀s P. (∀ x. x ∈ s ⇔ P x ) ⇔ s = P
Proof
rw [ ] >> eq_tac >> rw [ IN_DEF ] >> metis_tac [ ]
QED