@ -72,6 +72,8 @@ module type NonNegativeSymbol = sig
val pp : hum : bool -> F . formatter -> t -> unit
val split_mult : t -> ( t * t ) option
val make_err_trace : t -> string * Errlog . loc_trace
end
module type NonNegativeSymbolWithDegreeKind = sig
@ -86,6 +88,8 @@ module type NonNegativeSymbolWithDegreeKind = sig
val symbol : t -> t0
val split_mult : t -> ( t * t ) option
val make_err_trace_symbol : t0 -> string * Errlog . loc_trace
end
module MakeSymbolWithDegreeKind ( S : NonNegativeSymbol ) :
@ -135,6 +139,11 @@ module MakeSymbolWithDegreeKind (S : NonNegativeSymbol) :
let split_mult { degree_kind ; symbol } =
Option . map ( S . split_mult symbol ) ~ f : ( fun ( s1 , s2 ) -> ( make degree_kind s1 , make degree_kind s2 ) )
let make_err_trace { symbol } = S . make_err_trace symbol
let make_err_trace_symbol symbol = S . make_err_trace symbol
end
module MakePolynomial ( S : NonNegativeSymbolWithDegreeKind ) = struct
@ -207,47 +216,83 @@ module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
- symbols children of a term are ' smaller' than its self symbol
- contents of terms are not zero
- symbols in terms are only symbolic values * )
type t = { const : NonNegativeInt . t ; terms : t M . t } [ @@ deriving compare ]
type poly = { const : NonNegativeInt . t ; terms : poly M . t } [ @@ deriving compare ]
type t = { poly : poly ; autoreleasepool_trace : Bounds . BoundTrace . t option } [ @@ deriving compare ]
let get_autoreleasepool_trace { autoreleasepool_trace } = autoreleasepool_trace
let join_autoreleasepool_trace x y = Option . first_some x y
let poly_of_non_negative_int : NonNegativeInt . t -> poly = fun const -> { const ; terms = M . empty }
let of_non_negative_int : ? autoreleasepool_trace : Bounds . BoundTrace . t -> NonNegativeInt . t -> t =
fun ? autoreleasepool_trace const -> { poly = poly_of_non_negative_int const ; autoreleasepool_trace }
let of_non_negative_int : NonNegativeInt . t -> t = fun const -> { const ; terms = M . empty }
let zero_poly = poly_of_non_negative_int NonNegativeInt . zero
let zero = of_non_negative_int NonNegativeInt . zero
let one = of_non_negative_int NonNegativeInt . one
let one _poly = poly_ of_non_negative_int NonNegativeInt . one
let of_int_exn : int -> t = fun i -> i | > NonNegativeInt . of_int_exn | > of_non_negative_int
let o ne ? autoreleasepool_trace () = of_non_negative_int ? autoreleasepool_trace NonNegativeInt . one
let is_zero : t -> bool = fun { const ; terms } -> NonNegativeInt . is_zero const && M . is_empty terms
let of_int_exn : ? autoreleasepool_trace : Bounds . BoundTrace . t -> int -> t =
fun ? autoreleasepool_trace i ->
i | > NonNegativeInt . of_int_exn | > of_non_negative_int ? autoreleasepool_trace
let is_one : t -> bool = fun { const ; terms } -> NonNegativeInt . is_one const && M . is_empty terms
let is_constant : t -> bool = fun { terms } -> M . is_empty terms
let is_zero_poly : poly -> bool =
fun { const ; terms } -> NonNegativeInt . is_zero const && M . is_empty terms
let is_zero : t -> bool = fun { poly } -> is_zero_poly poly
let is_one_poly : poly -> bool =
fun { const ; terms } -> NonNegativeInt . is_one const && M . is_empty terms
let is_one : t -> bool = fun { poly } -> is_one_poly poly
let is_constant : t -> bool = fun { poly = { terms } } -> M . is_empty terms
let is_symbolic : t -> bool = fun p -> not ( is_constant p )
let rec plus : t -> t -> t =
let rec plus _poly : poly -> poly -> poly =
fun p1 p2 ->
{ const = NonNegativeInt . ( p1 . const + p2 . const )
; terms = M . increasing_union ~ f : plus p1 . terms p2 . terms }
; terms = M . increasing_union ~ f : plus_poly p1 . terms p2 . terms }
let plus : t -> t -> t =
fun p1 p2 ->
{ poly = plus_poly p1 . poly p2 . poly
; autoreleasepool_trace =
join_autoreleasepool_trace p1 . autoreleasepool_trace p2 . autoreleasepool_trace }
let rec mult_const_positive : t -> PositiveInt . t -> t =
let rec mult_const_positive : poly -> PositiveInt . t -> poly =
fun { const ; terms } c ->
{ const = NonNegativeInt . ( const * ( c :> NonNegativeInt . t ) )
; terms = M . map ( fun p -> mult_const_positive p c ) terms }
let mult_const : t -> NonNegativeInt . t -> t =
let mult_const _poly : poly -> NonNegativeInt . t -> poly =
fun p c ->
match PositiveInt . of_big_int ( c :> Z . t ) with None -> zero | Some c -> mult_const_positive p c
match PositiveInt . of_big_int ( c :> Z . t ) with
| None ->
zero_poly
| Some c ->
mult_const_positive p c
(* ( c + r * R + s * S + t * T ) x s
= 0 + r * ( R x s ) + s * ( c + s * S + t * T ) * )
let rec mult_symb : t -> S . t -> t =
let rec mult_symb _poly : poly -> S . t -> poly =
fun { const ; terms } s ->
let less_than_s , equal_s_opt , greater_than_s = M . split s terms in
let less_than_s = M . map ( fun p -> mult_symb p s ) less_than_s in
let less_than_s = M . map ( fun p -> mult_symb _poly p s ) less_than_s in
let s_term =
let terms =
match equal_s_opt with
@ -258,17 +303,30 @@ module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
in
{ const ; terms }
in
let terms = if is_zero s_term then less_than_s else M . add s s_term less_than_s in
let terms = if is_zero _poly s_term then less_than_s else M . add s s_term less_than_s in
{ const = NonNegativeInt . zero ; terms }
let rec mult : t -> t -> t =
let mult_symb : t -> S . t -> t = fun x s -> { x with poly = mult_symb_poly x . poly s }
let rec mult_poly : poly -> poly -> poly =
fun p1 p2 ->
if is_zero p1 | | is_zero p2 then zero
else if is_one p1 then p2
else if is_one p2 then p1
if is_zero _poly p1 | | is_zero _poly p2 then zero _poly
else if is_one _poly p1 then p2
else if is_one _poly p2 then p1
else
mult_const p1 p2 . const | > M . fold ( fun s p acc -> plus ( mult_symb ( mult p p1 ) s ) acc ) p2 . terms
mult_const_poly p1 p2 . const
| > M . fold ( fun s p acc -> plus_poly ( mult_symb_poly ( mult_poly p p1 ) s ) acc ) p2 . terms
let mult : t -> t -> t =
fun p1 p2 ->
let poly = mult_poly p1 . poly p2 . poly in
let autoreleasepool_trace =
if is_zero_poly poly then None
else join_autoreleasepool_trace p1 . autoreleasepool_trace p2 . autoreleasepool_trace
in
{ poly ; autoreleasepool_trace }
let rec of_valclass : ( NonNegativeInt . t , S . t , ' t ) Bounds . valclass -> ( ' t , t , ' t ) below_above =
@ -280,7 +338,9 @@ module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
| Symbolic s -> (
match S . split_mult s with
| None ->
Val { const = NonNegativeInt . zero ; terms = M . singleton s one }
Val
{ poly = { const = NonNegativeInt . zero ; terms = M . singleton s one_poly }
; autoreleasepool_trace = None }
| Some ( s1 , s2 ) -> (
match ( of_valclass ( S . classify s1 ) , of_valclass ( S . classify s2 ) ) with
| Val s1 , Val s2 ->
@ -311,34 +371,42 @@ module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
(* assumes symbols are not comparable *)
let rec leq : lhs : t -> rhs : t -> bool =
let rec leq _poly : lhs : poly -> rhs : poly -> bool =
fun ~ lhs ~ rhs ->
phys_equal lhs rhs
| | ( NonNegativeInt . leq ~ lhs : lhs . const ~ rhs : rhs . const && M . le ~ le_elt : leq lhs . terms rhs . terms )
| | NonNegativeInt . leq ~ lhs : lhs . const ~ rhs : rhs . const
&& M . le ~ le_elt : leq_poly lhs . terms rhs . terms
| | Option . exists ( int_ub lhs ) ~ f : ( fun lhs_ub ->
NonNegativeInt . leq ~ lhs : lhs_ub ~ rhs : ( int_lb rhs ) )
let rec xcompare ~ lhs ~ rhs =
let leq ~ lhs ~ rhs = leq_poly ~ lhs : lhs . poly ~ rhs : rhs . poly
let rec xcompare_poly ~ lhs ~ rhs =
let cmp_const =
PartialOrder . of_compare ~ compare : NonNegativeInt . compare ~ lhs : lhs . const ~ rhs : rhs . const
in
let cmp_terms = M . xcompare ~ xcompare_elt : xcompare ~ lhs : lhs . terms ~ rhs : rhs . terms in
let cmp_terms = M . xcompare ~ xcompare_elt : xcompare _poly ~ lhs : lhs . terms ~ rhs : rhs . terms in
PartialOrder . join cmp_const cmp_terms
let rec mask_min_max_constant { const ; terms } =
let xcompare ~ lhs ~ rhs = xcompare_poly ~ lhs : lhs . poly ~ rhs : rhs . poly
let rec mask_min_max_constant_poly { const ; terms } =
{ const
; terms =
M . fold
( fun s p acc ->
let p' = mask_min_max_constant p in
let p' = mask_min_max_constant _poly p in
M . update ( S . mask_min_max_constant s )
( function None -> Some p' | Some p -> if leq ~ lhs : p ~ rhs : p' then Some p' else Some p )
( function
| None -> Some p' | Some p -> if leq_poly ~ lhs : p ~ rhs : p' then Some p' else Some p )
acc )
terms M . empty }
let mask_min_max_constant x = { x with poly = mask_min_max_constant_poly x . poly }
(* assumes symbols are not comparable *)
(* TODO: improve this for comparable symbols *)
let min_default_left : t -> t -> t =
@ -355,7 +423,7 @@ module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
let subst callee_pname location =
let exception ReturnTop of ( S . t * Bounds . BoundTrace . t ) in
(* avoids top-lifting everything *)
let rec subst { const ; terms } eval_sym =
let rec subst _poly { const ; terms } eval_sym =
M . fold
( fun s p acc ->
match S . subst callee_pname location s eval_sym with
@ -364,36 +432,48 @@ module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
| None ->
acc
| Some c ->
let p = subst p eval_sym in
mult_const_positive p c | > plus acc )
let p = subst _poly p eval_sym in
mult_const_positive p c | > plus _poly acc )
| ValTop trace ->
let p = subst p eval_sym in
if is_zero p then acc else raise ( ReturnTop ( s , trace ) )
let p = subst _poly p eval_sym in
if is_zero _poly p then acc else raise ( ReturnTop ( s , trace ) )
| Symbolic s ->
let p = subst p eval_sym in
mult_symb p s | > plus acc )
terms ( of_non_negative_int const )
let p = subst _poly p eval_sym in
mult_symb _poly p s | > plus _poly acc )
terms ( poly_ of_non_negative_int const )
in
fun p eval_sym ->
match subst p eval_sym with p -> Val p | exception ReturnTop s_trace -> Above s_trace
fun { poly ; autoreleasepool_trace } eval_sym ->
match subst_poly poly eval_sym with
| poly ->
let autoreleasepool_trace =
Option . map autoreleasepool_trace ~ f : ( fun autoreleasepool_trace ->
Bounds . BoundTrace . call ~ callee_pname ~ location autoreleasepool_trace )
in
Val { poly ; autoreleasepool_trace }
| exception ReturnTop s_trace ->
Above s_trace
(* * Emit a pair ( d,t ) where d is the degree of the polynomial and t is the first term with such
degree * )
let rec degree_with_term { terms } =
M . fold
( fun t p cur_max ->
let d , p' = degree_with_term p in
let degree_term = ( Degree . succ ( S . degree_kind t ) d , mult_symb p' t ) in
if [ % compare : Degree . t * t ] degree_term cur_max > 0 then degree_term else cur_max )
terms ( Degree . zero , one )
let degree_with_term { poly ; autoreleasepool_trace } =
let rec degree_with_term_poly { terms } =
M . fold
( fun t p cur_max ->
let d , p' = degree_with_term_poly p in
let degree_term = ( Degree . succ ( S . degree_kind t ) d , mult_symb p' t ) in
if [ % compare : Degree . t * t ] degree_term cur_max > 0 then degree_term else cur_max )
terms
( Degree . zero , one ? autoreleasepool_trace () )
in
degree_with_term_poly poly
let degree p = fst ( degree_with_term p )
let multiplication_sep = F . sprintf " %s " SpecialChars . multiplication_sign
let pp : hum : bool -> F . formatter -> t -> unit =
let pp _poly : hum : bool -> F . formatter -> poly -> unit =
let add_symb s ( ( ( last_s , last_occ ) as last ) , others ) =
if Int . equal 0 ( S . compare s last_s ) then ( ( last_s , PositiveInt . succ last_occ ) , others )
else ( ( s , PositiveInt . one ) , last :: others )
@ -442,11 +522,22 @@ module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
| > ignore
let pp : hum : bool -> F . formatter -> t -> unit = fun ~ hum fmt { poly } -> pp_poly ~ hum fmt poly
let get_symbols p : S . t0 list =
let rec get_symbols_sub { terms } acc =
M . fold ( fun s p acc -> get_symbols_sub p ( S . symbol s :: acc ) ) terms acc
in
get_symbols_sub p []
get_symbols_sub p . poly []
let polynomial_traces ? ( is_autoreleasepool_trace = false ) p =
let traces = get_symbols p | > List . map ~ f : S . make_err_trace_symbol in
if is_autoreleasepool_trace then
get_autoreleasepool_trace p
| > Option . value_map ~ default : traces ~ f : ( fun trace ->
traces @ [ ( " autorelease " , Bounds . BoundTrace . make_err_trace ~ depth : 0 trace ) ] )
else traces
end
module NonNegativeBoundWithDegreeKind = MakeSymbolWithDegreeKind ( Bounds . NonNegativeBound )
@ -594,13 +685,17 @@ module NonNegativePolynomial = struct
let zero = Val NonNegativeNonTopPolynomial . zero
let one = Val NonNegativeNonTopPolynomial . one
let one ? autoreleasepool_trace () =
Val ( NonNegativeNonTopPolynomial . one ? autoreleasepool_trace () )
let of_unreachable node_loc =
Below ( UnreachableTraces . singleton ( UnreachableTrace . unreachable_node node_loc ) )
let of_int_exn i = Val ( NonNegativeNonTopPolynomial . of_int_exn i )
let of_int_exn ? autoreleasepool_trace i =
Val ( NonNegativeNonTopPolynomial . of_int_exn ? autoreleasepool_trace i )
let make_trace_set ~ map_above =
AbstractDomain . StackedUtils . map
@ -694,11 +789,6 @@ module NonNegativePolynomial = struct
~ f_below : Fn . id
let get_symbols =
AbstractDomain . StackedUtils . map ~ f : NonNegativeNonTopPolynomial . get_symbols ~ f_above : Fn . id
~ f_below : Fn . id
let pp_degree ~ only_bigO fmt = function
| Above _ ->
Format . pp_print_string fmt " Top "
@ -720,12 +810,12 @@ module NonNegativePolynomial = struct
" "
let polynomial_traces p =
match get_symbols p with
let polynomial_traces ? is_autoreleasepool_trace = function
| Below trace ->
UnreachableTraces . make_err_trace trace
| Val symbols ->
List . map symbols ~ f : Bounds . NonNegativeBound . make_err_trace | > Errlog . concat_traces
| Val p ->
NonNegativeNonTopPolynomial . polynomial_traces ? is_autoreleasepool_trace p
| > Errlog . concat_traces
| Above trace ->
TopTraces . make_err_trace trace