Summary: The SLEdge internal first-order theory solver targets the "word problem", where a query has the form `C ⊢ L` where `C` is a conjunction of literals and `L` is a single literal. This can be abused to implement a naive SMT solver using an expansion to disjunctive-normal form and checking `C ⊢ false` for each branch `C` of the DNF. This is not useful as an SMT solver, but can be used for testing. Reviewed By: ngorogiannis Differential Revision: D23459524 fbshipit-source-id: 5483e5a84master
parent
f12ca72f07
commit
7fd5dc49be
@ -0,0 +1,186 @@
|
||||
(*
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*)
|
||||
|
||||
(** Process SMT-LIB benchmarks using SLEdge's first-order theory solver. *)
|
||||
|
||||
module Smt = Smtlib_utils.V_2_6
|
||||
open Fol
|
||||
module VarEnv = Map.Make (String)
|
||||
|
||||
type var_env = Term.t VarEnv.t
|
||||
type frame = {mutable asserts: Smt.Ast.term list; mutable var_env: var_env}
|
||||
|
||||
let init_stack = [{asserts= []; var_env= VarEnv.empty}]
|
||||
let stack = ref init_stack
|
||||
let top () = List.hd_exn !stack
|
||||
|
||||
let push () =
|
||||
let {asserts; var_env} = top () in
|
||||
stack := {asserts; var_env} :: !stack
|
||||
|
||||
let pop () =
|
||||
match !stack with
|
||||
| [] -> assert false
|
||||
| [_] -> ()
|
||||
| _ :: tl -> stack := tl
|
||||
|
||||
let reset () = stack := init_stack
|
||||
|
||||
let id =
|
||||
let count = ref (-1) in
|
||||
fun () ->
|
||||
incr count ;
|
||||
!count
|
||||
|
||||
let decl_var name =
|
||||
let v = Term.var (Var.identified ~name ~id:(id ())) in
|
||||
let top = top () in
|
||||
top.var_env <- VarEnv.add_exn ~key:name ~data:v top.var_env
|
||||
|
||||
let assert_term term =
|
||||
let top = top () in
|
||||
top.asserts <- term :: top.asserts
|
||||
|
||||
let rec x_let init nes =
|
||||
List.fold nes ~init ~f:(fun n (name, term) ->
|
||||
VarEnv.add_exn ~key:name ~data:(x_trm init term) n )
|
||||
|
||||
and x_trm : var_env -> Smt.Ast.term -> Term.t =
|
||||
fun n term ->
|
||||
match term with
|
||||
| Const s -> (
|
||||
try VarEnv.find_exn n s
|
||||
with _ -> (
|
||||
try Term.rational (Q.of_string s)
|
||||
with _ -> (
|
||||
try Term.rational (Q.of_float (Float.of_string s))
|
||||
with _ -> fail "not a rational: %a" Smt.Ast.pp_term term () ) ) )
|
||||
| Arith (Add, e :: es) ->
|
||||
List.fold ~f:(fun s e -> Term.add s (x_trm n e)) ~init:(x_trm n e) es
|
||||
| Arith (Minus, e :: es) ->
|
||||
List.fold ~f:(fun s e -> Term.sub s (x_trm n e)) ~init:(x_trm n e) es
|
||||
| Arith (Mult, es) -> (
|
||||
match List.map ~f:(x_trm n) es with
|
||||
| e :: es ->
|
||||
List.fold es ~init:e ~f:(fun p e ->
|
||||
match Term.const_of e with
|
||||
| Some q -> Term.mulq q p
|
||||
| None -> (
|
||||
match Term.const_of p with
|
||||
| Some q -> Term.mulq q e
|
||||
| None -> fail "nonlinear: %a" Smt.Ast.pp_term term () ) )
|
||||
| [] -> fail "malformed: %a" Smt.Ast.pp_term term () )
|
||||
| Arith (Div, es) -> (
|
||||
match List.map ~f:(x_trm n) es with
|
||||
| e :: es ->
|
||||
List.fold es ~init:e ~f:(fun p e ->
|
||||
match Term.const_of e with
|
||||
| Some q -> Term.mulq (Q.inv q) p
|
||||
| None -> fail "nonlinear: %a" Smt.Ast.pp_term term () )
|
||||
| [] -> fail "malformed: %a" Smt.Ast.pp_term term () )
|
||||
| If (c, t, e) ->
|
||||
Term.ite ~cnd:(x_fml n c) ~thn:(x_trm n t) ~els:(x_trm n e)
|
||||
| App _ -> todo "%a" Smt.Ast.pp_term term ()
|
||||
| Let (nes, e) -> x_trm (x_let n nes) e
|
||||
| Attr (e, _) -> x_trm n e
|
||||
| Fun _ | HO_app _ -> fail "higher-order: %a" Smt.Ast.pp_term term ()
|
||||
| Match _ -> fail "datatype: %a" Smt.Ast.pp_term term ()
|
||||
| Cast _ -> fail "cast: %a" Smt.Ast.pp_term term ()
|
||||
| Arith ((Add | Minus), _) -> fail "malformed: %a" Smt.Ast.pp_term term ()
|
||||
| True | False
|
||||
|Arith ((Leq | Lt | Geq | Gt), _)
|
||||
|Is_a _ | Eq _ | Imply _ | And _ | Or _ | Not _ | Distinct _ | Forall _
|
||||
|Exists _ ->
|
||||
Formula.inject (x_fml n term)
|
||||
|
||||
and x_fml : var_env -> Smt.Ast.term -> Formula.t =
|
||||
fun n term ->
|
||||
match term with
|
||||
| True -> Formula.tt
|
||||
| False -> Formula.ff
|
||||
| If (cnd, pos, neg) ->
|
||||
Formula.cond ~cnd:(x_fml n cnd) ~pos:(x_fml n pos) ~neg:(x_fml n neg)
|
||||
| App _ -> todo "%a" Smt.Ast.pp_term term ()
|
||||
| Let (nes, b) -> x_fml (x_let n nes) b
|
||||
| Eq (d, e) -> Formula.eq (x_trm n d) (x_trm n e)
|
||||
| Imply (a, b) -> x_fml n (Or [Not a; b])
|
||||
| And bs -> Formula.andN (List.map ~f:(x_fml n) bs)
|
||||
| Or bs -> Formula.orN (List.map ~f:(x_fml n) bs)
|
||||
| Distinct es ->
|
||||
es
|
||||
|> List.map ~f:(x_trm n)
|
||||
|> Iter.diagonal_l
|
||||
|> Iter.map ~f:(fun (d, e) -> Formula.dq d e)
|
||||
|> Iter.to_list
|
||||
|> Formula.andN
|
||||
| Not b -> Formula.not_ (x_fml n b)
|
||||
| Attr (b, _) -> x_fml n b
|
||||
| Cast _ -> fail "cast: %a" Smt.Ast.pp_term term ()
|
||||
| Arith ((Leq | Lt | Geq | Gt), _) ->
|
||||
fail "inequality: %a" Smt.Ast.pp_term term ()
|
||||
| Fun _ | HO_app _ -> fail "higher-order: %a" Smt.Ast.pp_term term ()
|
||||
| Match _ | Is_a _ -> fail "datatype: %a" Smt.Ast.pp_term term ()
|
||||
| Forall _ | Exists _ -> fail "quantifier: %a" Smt.Ast.pp_term term ()
|
||||
| Const _ | Arith ((Add | Minus | Mult | Div), _) ->
|
||||
Formula.dq0 (x_trm n term)
|
||||
|
||||
let x_context {asserts; var_env} =
|
||||
Context.dnf (Formula.andN (List.map ~f:(x_fml var_env) asserts))
|
||||
|
||||
let check_unsat (_, asserts, ctx) =
|
||||
[%Trace.call fun {pf} ->
|
||||
pf "%a@ %a@ %a" Formula.pp asserts Context.pp ctx Context.pp_raw ctx]
|
||||
;
|
||||
( Context.is_unsat ctx
|
||||
|| Formula.equal Formula.ff
|
||||
(Formula.map_terms ~f:(Context.normalize ctx) asserts) )
|
||||
|>
|
||||
[%Trace.retn fun {pf} -> pf "%b"]
|
||||
|
||||
exception Unsound
|
||||
exception Incomplete
|
||||
|
||||
let expect_unsat = ref false
|
||||
|
||||
let check_sat () =
|
||||
let unsat = Iter.for_all ~f:check_unsat (x_context (top ())) in
|
||||
if (not unsat) && !expect_unsat then raise Incomplete
|
||||
else if unsat && not !expect_unsat then raise Unsound
|
||||
|
||||
let process_stmt (stmt : Smt.Ast.statement) =
|
||||
match stmt.stmt with
|
||||
| Stmt_set_logic _ -> ()
|
||||
| Stmt_set_info (":status", "unsat") -> expect_unsat := true
|
||||
| Stmt_set_info (":status", _) -> expect_unsat := false
|
||||
| Stmt_set_info _ | Stmt_set_option _ | Stmt_decl_sort _ -> ()
|
||||
| Stmt_decl {fun_name; fun_args= []} -> decl_var fun_name
|
||||
| Stmt_decl _ -> todo "%a" Smt.Ast.pp_stmt stmt ()
|
||||
| Stmt_fun_def {fr_decl= {fun_name; fun_args= []}; fr_body} ->
|
||||
assert_term (Eq (Const fun_name, fr_body))
|
||||
| Stmt_fun_def _ | Stmt_fun_rec _ | Stmt_funs_rec _ ->
|
||||
fail "function definition: %a" Smt.Ast.pp_stmt stmt ()
|
||||
| Stmt_data _ -> fail "datatype definition" ()
|
||||
| Stmt_assert term -> assert_term term
|
||||
| Stmt_get_assertions | Stmt_get_assignment | Stmt_get_info _
|
||||
|Stmt_get_model | Stmt_get_option _ | Stmt_get_proof
|
||||
|Stmt_get_unsat_assumptions | Stmt_get_unsat_core | Stmt_get_value _ ->
|
||||
()
|
||||
| Stmt_check_sat -> check_sat ()
|
||||
| Stmt_check_sat_assuming _ -> fail "check-sat-assuming" ()
|
||||
| Stmt_pop n ->
|
||||
for _ = 1 to n do
|
||||
pop ()
|
||||
done
|
||||
| Stmt_push n ->
|
||||
for _ = 1 to n do
|
||||
push ()
|
||||
done
|
||||
| Stmt_reset | Stmt_reset_assertions -> reset ()
|
||||
| Stmt_exit -> ()
|
||||
|
||||
let process filename =
|
||||
List.iter ~f:process_stmt (Smt.parse_file_exn filename)
|
@ -0,0 +1,13 @@
|
||||
(*
|
||||
* Copyright (c) Facebook, Inc. and its affiliates.
|
||||
*
|
||||
* This source code is licensed under the MIT license found in the
|
||||
* LICENSE file in the root directory of this source tree.
|
||||
*)
|
||||
|
||||
(** Process SMT-LIB benchmarks using SLEdge's first-order theory solver. *)
|
||||
|
||||
exception Unsound
|
||||
exception Incomplete
|
||||
|
||||
val process : string -> unit
|
Loading…
Reference in new issue