[sledge] Close Equality.classes under one-step congruence

Summary:
Equality.classes was assuming a simpler representation, and was
incomplete as a result.

The 'representative' map is not kept in a normalized form, where
subterms are necessarily representatives. Therefore, applying the
representative map to subterms of terms in a class can reveal new
elements of the class. This mirrors how the `lookup` function in
`normalize` works.

Reviewed By: ngorogiannis

Differential Revision: D19221868

fbshipit-source-id: 4a2ed6d3f
master
Josh Berdine 5 years ago committed by Facebook Github Bot
parent ca1ba2511b
commit 914cd06e4d

@ -22,10 +22,19 @@ type t =
'rep(resentative)' of [a] *) }
[@@deriving compare, equal, sexp]
(** apply a subst to a term *)
let apply s a = Map.find s a |> Option.value ~default:a
let classes r =
let add key data cls =
if Term.equal key data then cls
else Map.add_multi cls ~key:data ~data:key
in
Map.fold r.rep ~init:empty_map ~f:(fun ~key ~data cls ->
if Term.equal key data then cls
else Map.add_multi cls ~key:data ~data:key )
match Term.classify key with
| `Interpreted | `Atomic -> add key data cls
| `Simplified | `Uninterpreted ->
add (Term.map ~f:(apply r.rep) key) data cls )
(** Pretty-printing *)
@ -106,9 +115,6 @@ let invariant r =
let true_ = {sat= true; rep= empty_map} |> check invariant
(** apply a subst to a term *)
let apply s a = Map.find s a |> Option.value ~default:a
(** apply a subst to maximal non-interpreted subterms *)
let rec norm s a =
match Term.classify a with

@ -140,8 +140,8 @@ let%test_module _ =
pp r3 ;
[%expect
{|
%t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = (%y_6 rem %v_3)
= (%y_6 rem %z_7)
%t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = (%y_6 rem %t_1)
= (%y_6 rem %t_1)
{sat= true;
rep= [[%u_2 %t_1];
@ -343,8 +343,7 @@ let%test_module _ =
let r15 = of_eqs [(b, b); (x, !1)]
let%expect_test _ =
pp r15 ; [%expect {|
{sat= true; rep= [[%x_5 1]]} |}]
pp r15 ; [%expect {| {sat= true; rep= [[%x_5 1]]} |}]
let%test _ = entails_eq r15 b (Term.signed 1 !1)
let%test _ = entails_eq r15 (Term.unsigned 1 b) !1
@ -391,6 +390,6 @@ let%test_module _ =
[((u8) %x_5) %x_5];
[((u8) %y_6) ]]}
(((u8) %y_6) + 1) = %y_6
%x_5 = ((u8) %x_5) |}]
(((u8) %y_6) + 1) = %y_6 %x_5 = ((u8) %x_5)
((u8) %y_6) = ((u8) (((u8) %y_6) + 1)) |}]
end )

@ -196,6 +196,7 @@ let%test_module _ =
) infer_frame:
%a0_10, %a1_11 .
%a_2 = %a0_10
%n_9,%a0_10 = 16,%a_2
32,%a_1 = %n_9,%a0_10^16,%a1_11
16 = %m_8 = %n_9
(%k_5 + 16) -[ %k_5, 16 )-> 16,%a1_11 |}]

Loading…
Cancel
Save