[sledge] Add a distinct formula and use it to strengthen Sh.pure_approx

Reviewed By: ngorogiannis

Differential Revision: D28907805

fbshipit-source-id: b588e8964
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent 2378068442
commit a07c71352b

@ -800,7 +800,7 @@ let rec add_ wrt b r =
| And {pos; neg} -> Fml.fold_pos_neg ~f:(add_ wrt) ~pos ~neg r
| Eq (d, e) -> and_eq ~wrt d e r
| Eq0 e -> and_eq ~wrt Trm.zero e r
| Pos _ | Not _ | Or _ | Iff _ | Cond _ | Lit _ -> r
| Distinct _ | Pos _ | Not _ | Or _ | Iff _ | Cond _ | Lit _ -> r
let add us b r =
[%Trace.call fun {pf} -> pf "@ %a@ | %a" Fml.pp b pp r]

@ -341,6 +341,7 @@ module Formula = struct
let eq = ap2f Fml.eq
let dq a b = Fml.not_ (eq a b)
let distinct = apNf Fml.distinct
(* arithmetic *)
@ -391,6 +392,7 @@ module Formula = struct
match b with
| Tt -> b
| Eq (x, y) -> lift_map2 f b Fml.eq x y
| Distinct xs -> lift_mapN f b Fml.distinct xs
| Eq0 x -> lift_map1 f b Fml.eq0 x
| Pos x -> lift_map1 f b Fml.pos x
| Not x -> map1 (map_terms ~f) b Fml.not_ x

@ -109,6 +109,7 @@ and Formula : sig
(* equality *)
val eq : Term.t -> Term.t -> t
val dq : Term.t -> Term.t -> t
val distinct : Term.t array -> t
(* arithmetic *)
val eq0 : Term.t -> t

@ -52,6 +52,7 @@ let ppx strength fs fml =
| Not Tt -> pf "ff"
| Eq (x, y) -> pp_binop pp_t x "=" pp_t y
| Not (Eq (x, y)) -> pp_binop pp_t x "" pp_t y
| Distinct xs -> pf "(%a)" (Array.pp "@ ≠ " pp_t) xs
| Eq0 x -> pp_arith "=" x
| Not (Eq0 x) -> pp_arith "" x
| Pos x -> pp_arith ">" x
@ -86,16 +87,16 @@ let _Pos x =
| Q q -> bool (Q.gt q Q.zero)
| x -> _Pos x
let sort_eq x y =
match Sign.of_int (Trm.compare x y) with
| Neg -> _Eq x y
| Zero -> tt
| Pos -> _Eq y x
let _Eq x y =
if x == Trm.zero then _Eq0 y
else if y == Trm.zero then _Eq0 x
else
let sort_eq x y =
match Sign.of_int (Trm.compare x y) with
| Neg -> _Eq x y
| Zero -> tt
| Pos -> _Eq y x
in
match (x, y) with
(* x = y ==> 0 = x - y when x = y is an arithmetic equality *)
| (Z _ | Q _ | Arith _), _ | _, (Z _ | Q _ | Arith _) ->
@ -144,7 +145,17 @@ let _Eq x y =
_Eq (Trm.sized ~siz:(Trm.seq_size_exn a) ~seq:x) a
| _ -> sort_eq x y
let _Distinct xs =
match Array.length xs with
| 0 | 1 -> tt
| 2 -> _Not (sort_eq xs.(0) xs.(1))
| _ ->
Array.sort ~cmp:Trm.compare xs ;
if Array.contains_adjacent_duplicate ~eq:Trm.equal xs then ff
else _Distinct xs
let eq = _Eq
let distinct = _Distinct
let eq0 = _Eq0
let pos = _Pos
let not_ = _Not
@ -160,6 +171,7 @@ let rec map_trms b ~f =
match b with
| Tt -> b
| Eq (x, y) -> map2 f b _Eq x y
| Distinct xs -> mapN f b _Distinct xs
| Eq0 x -> map1 f b _Eq0 x
| Pos x -> map1 f b _Pos x
| Not x -> map1 (map_trms ~f) b _Not x
@ -185,7 +197,7 @@ let iter_pos_neg ~pos ~neg ~f =
let iter_dnf ~meet1 ~top fml ~f =
let rec add_conjunct fml (cjn, splits) =
match fml with
| Tt | Eq _ | Eq0 _ | Pos _ | Iff _ | Lit _ | Not _ ->
| Tt | Eq _ | Distinct _ | Eq0 _ | Pos _ | Iff _ | Lit _ | Not _ ->
(meet1 fml cjn, splits)
| And {pos; neg} -> fold_pos_neg ~f:add_conjunct ~pos ~neg (cjn, splits)
| Or {pos; neg} -> (cjn, (pos, neg) :: splits)

@ -14,6 +14,7 @@ type t = private
| Tt
(* equality *)
| Eq of Trm.t * Trm.t
| Distinct of Trm.t array
(* arithmetic *)
| Eq0 of Trm.t (** [Eq0(x)] iff x = 0 *)
| Pos of Trm.t (** [Pos(x)] iff x > 0 *)
@ -45,6 +46,7 @@ val bool : bool -> t
(* equality *)
val eq : Trm.t -> Trm.t -> t
val distinct : Trm.t array -> t
(* arithmetic *)
val eq0 : Trm.t -> t

@ -19,6 +19,7 @@ struct
type t =
| Tt
| Eq of Trm.t * Trm.t
| Distinct of Trm.t array
| Eq0 of Trm.t
| Pos of Trm.t
| Not of t
@ -82,7 +83,7 @@ struct
| And {pos; neg} -> Or {pos= neg; neg= pos}
| Or {pos; neg} -> And {pos= neg; neg= pos}
| Cond {cnd; pos; neg} -> Cond {cnd; pos= _Not pos; neg= _Not neg}
| Tt | Eq _ | Eq0 _ | Pos _ | Lit _ | Iff _ -> Not p )
| Tt | Eq _ | Distinct _ | Eq0 _ | Pos _ | Lit _ | Iff _ -> Not p )
|> check invariant
let _Join cons unit zero ~pos ~neg =
@ -238,6 +239,7 @@ struct
|> check invariant
let _Eq x y = Eq (x, y) |> check invariant
let _Distinct xs = Distinct xs |> check invariant
let _Eq0 x = Eq0 x |> check invariant
let _Pos x = Pos x |> check invariant
let _Lit p xs = Lit (p, xs) |> check invariant
@ -253,6 +255,7 @@ struct
| Eq (x, y) ->
f x ;
f y
| Distinct xs -> Array.iter ~f xs
| Eq0 x | Pos x -> f x
| Not x -> iter_trms ~f x
| And {pos; neg} | Or {pos; neg} ->

@ -19,6 +19,7 @@ module type FORMULA = sig
| Tt
(* equality *)
| Eq of trm * trm
| Distinct of trm array
(* arithmetic *)
| Eq0 of trm (** [Eq0(x)] iff x = 0 *)
| Pos of trm (** [Pos(x)] iff x > 0 *)
@ -34,6 +35,7 @@ module type FORMULA = sig
val mk_Tt : unit -> t
val _Eq : trm -> trm -> t
val _Distinct : trm array -> t
val _Eq0 : trm -> t
val _Pos : trm -> t
val _Not : t -> t

@ -639,8 +639,10 @@ let dnf q =
(** first-order approximation of heap constraints *)
let rec pure_approx q =
Formula.andN
( [q.pure]
|> List.fold q.heap ~f:(fun seg p -> Formula.dq0 seg.loc :: p)
( [ q.pure
; Formula.distinct
(Array.of_list
(Term.zero :: List.map ~f:(fun seg -> seg.loc) q.heap)) ]
|> List.fold q.djns ~f:(fun djn p ->
Formula.orN (List.map djn ~f:pure_approx) :: p ) )

@ -246,12 +246,11 @@ let%test_module _ =
\- %a_1, %m_8 .
%l_6 -[ %l_6, %m_8 )-> %m_8,%a_1
) Solver.infer_frame:
( ( 1 = %n_9 16 = %m_8 (8,%a_2^8,%a_3) = %a_1 emp)
( %a_1 = %a_2
( ( %a_1 = %a_2
2 = %n_9
16 = %m_8
(16 + %l_6) -[ %l_6, 16 )-> 0,%a_3)
( 0 = %n_9 16 = %m_8 (0,%a_2^16,%a_3) = %a_1 emp)
( 1 = %n_9 16 = %m_8 (8,%a_2^8,%a_3) = %a_1 emp)
) |}]
(* Incompleteness: equivalent to above but using ≤ instead of *)

Loading…
Cancel
Save