From a6f948c2c34d16c893f8cc5eba2eb41650fe236d Mon Sep 17 00:00:00 2001 From: Josh Berdine Date: Mon, 2 Mar 2020 08:43:45 -0800 Subject: [PATCH] [sledge] Strengthen handling of existential segments Summary: Due to strengthened existential witnessing, the incomplete ad hoc witness guessing is no longer needed. Reviewed By: ngorogiannis Differential Revision: D20120277 fbshipit-source-id: 8ee1656dd --- sledge/src/symbheap/solver.ml | 6 ++---- sledge/src/symbheap/solver_test.ml | 9 ++++++--- 2 files changed, 8 insertions(+), 7 deletions(-) diff --git a/sledge/src/symbheap/solver.ml b/sledge/src/symbheap/solver.ml index ba4486a8f..9a307a44c 100644 --- a/sledge/src/symbheap/solver.ml +++ b/sledge/src/symbheap/solver.ml @@ -498,9 +498,7 @@ let excise_seg ({sub} as goal) msg ssg = ) (* k-l = 0 so k = l *) | Zero -> ( - match Equality.difference sub.cong o n with - | None -> Some {goal with sub= Sh.and_ (Term.eq o n) goal.sub} - | Some o_n -> ( + let* o_n = Equality.difference sub.cong o n in match Int.sign (Z.sign o_n) with (* o-n < 0 [k; o) * so o < n ⊢ [l; n) *) @@ -510,7 +508,7 @@ let excise_seg ({sub} as goal) msg ssg = | Zero -> Some (excise_seg_same goal msg ssg) (* o-n > 0 [k; o) * so o > n ⊢ [l; n) *) - | Pos -> Some (excise_seg_sub_prefix goal msg ssg o_n) ) ) + | Pos -> Some (excise_seg_sub_prefix goal msg ssg o_n) ) (* k-l > 0 so k > l *) | Pos -> ( let ko = Term.add k o in diff --git a/sledge/src/symbheap/solver_test.ml b/sledge/src/symbheap/solver_test.ml index b84585040..b4e85b70f 100644 --- a/sledge/src/symbheap/solver_test.ml +++ b/sledge/src/symbheap/solver_test.ml @@ -194,8 +194,6 @@ let%test_module _ = ∧ 16 = %m_8 = %n_9 ∧ (%k_5 + 16) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}] - (* Incompleteness: changing the order of the subtrahend leads to - different existential instantiation, which fails *) let%expect_test _ = infer_frame (Sh.star @@ -211,7 +209,12 @@ let%test_module _ = %k_5 -[ %k_5, 16 )-> ⟨32,%a_1⟩ * %l_6 -[)-> ⟨8,16⟩ \- ∃ %a_2, %m_8, %n_9 . %k_5 -[ %k_5, %m_8 )-> ⟨%n_9,%a_2⟩ * %l_6 -[)-> ⟨8,%n_9⟩ - ) infer_frame: |}] + ) infer_frame: + ∃ %a0_10, %a1_11 . + %a_2 = %a0_10 + ∧ (⟨16,%a_2⟩^⟨16,%a1_11⟩) = %a_1 + ∧ 16 = %m_8 = %n_9 + ∧ (%k_5 + 16) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}] let seg_split_symbolically = Sh.star