@ -28,12 +28,13 @@ type t = starjunction [@@deriving compare, equal, sexp]
let map_seg { loc ; bas ; len ; siz ; arr } ~ f =
{ loc = f loc ; bas = f bas ; len = f len ; siz = f siz ; arr = f arr }
let pp_seg fs { loc ; bas ; len ; siz ; arr } =
Format . fprintf fs " @[<2>%a@ @[@[-[%a)->@]@ %a@]@] " Exp . pp loc
let pp_seg ? is_x fs { loc ; bas ; len ; siz ; arr } =
let exp_pp = Exp . pp_full ? is_x in
Format . fprintf fs " @[<2>%a@ @[@[-[%a)->@]@ %a@]@] " exp_pp loc
( fun fs ( bas , len ) ->
if ( not ( Exp . equal loc bas ) ) | | not ( Exp . equal len siz ) then
Format . fprintf fs " %a, %a " Exp . pp bas Exp . pp len )
( bas , len ) Exp . pp ( Exp . memory ~ siz ~ arr )
Format . fprintf fs " %a, %a " exp_pp bas exp_ pp len )
( bas , len ) exp_ pp ( Exp . memory ~ siz ~ arr )
let pp_seg_norm cong fs seg =
pp_seg fs ( map_seg seg ~ f : ( Equality . normalize cong ) )
@ -42,18 +43,20 @@ let pp_us ?(pre = ("" : _ fmt)) fs us =
if not ( Set . is_empty us ) then
[ % Trace . fprintf fs " %( %)@[%a@] .@ " pre Var . Set . pp us ]
let rec pp vs fs { us ; xs ; cong ; pure ; heap ; djns } =
let rec pp vs all_xs fs { us ; xs ; cong ; pure ; heap ; djns } =
Format . pp_open_hvbox fs 0 ;
let all_xs = Set . union all_xs xs in
let is_x var = Set . mem all_xs ( Option . value_exn ( Var . of_exp var ) ) in
pp_us fs us ;
let xs_i_vs , xs_d_vs = Set . inter_diff vs xs in
if not ( Set . is_empty xs_i_vs ) then (
Format . fprintf fs " @<2>∃ @[%a@] . " Var . Set . pp xs_i_vs ;
Format . fprintf fs " @<2>∃ @[%a@] . " ( Var . Set . pp _full ~ is_x ) xs_i_vs ;
if not ( Set . is_empty xs_d_vs ) then Format . fprintf fs " @ " ) ;
if not ( Set . is_empty xs_d_vs ) then
Format . fprintf fs " @<2>∃ @[%a@] .@ " Var . Set . pp xs_d_vs ;
Format . fprintf fs " @<2>∃ @[%a@] .@ " ( Var . Set . pp _full ~ is_x ) xs_d_vs ;
let first = Equality . is_true cong in
if not first then Format . fprintf fs " " ;
Equality . pp_classes fs cong ;
Equality . pp_classes ~ is_x fs cong ;
let pure_exps =
List . filter_map pure ~ f : ( fun e ->
let e' = Equality . normalize cong e in
@ -61,7 +64,7 @@ let rec pp vs fs {us; xs; cong; pure; heap; djns} =
in
List . pp
~ pre : ( if first then " " else " @ @<2>∧ " )
" @ @<2>∧ " Exp . pp fs pure_exps ;
" @ @<2>∧ " ( Exp . pp _full ~ is_x ) fs pure_exps ;
let first = first && List . is_empty pure_exps in
if List . is_empty heap then
Format . fprintf fs
@ -70,7 +73,7 @@ let rec pp vs fs {us; xs; cong; pure; heap; djns} =
else
List . pp
~ pre : ( if first then " " else " @ @<2>∧ " )
" @ * " pp_seg fs
" @ * " ( pp_seg ~ is_x ) fs
( List . sort
( List . map ~ f : ( map_seg ~ f : ( Equality . normalize cong ) ) heap )
~ compare : ( fun s1 s2 ->
@ -86,21 +89,21 @@ let rec pp vs fs {us; xs; cong; pure; heap; djns} =
List . pp
~ pre : ( if first then " " else " @ * " )
" @ * "
( pp_djn ( Set . union vs ( Set . union us xs ) ) )
( pp_djn ( Set . union vs ( Set . union us xs ) ) all_xs )
fs djns ;
Format . pp_close_box fs ()
and pp_djn vs fs = function
and pp_djn vs all_xs fs = function
| [] -> Format . fprintf fs " false "
| djn ->
Format . fprintf fs " @[<hv>( %a@ )@] "
( List . pp " @ @<2>∨ " ( fun fs sjn ->
Format . fprintf fs " @[<hv 1>(%a)@] " ( pp vs )
Format . fprintf fs " @[<hv 1>(%a)@] " ( pp vs all_xs )
{ sjn with us = Set . diff sjn . us vs } ) )
djn
let pp = pp Var . Set . empty
let pp_djn = pp_djn Var . Set . empty
let pp = pp Var . Set . empty Var . Set . empty
let pp_djn = pp_djn Var . Set . empty Var . Set . empty
let fold_exps_seg { loc ; bas ; len ; siz ; arr } ~ init ~ f =
let f b z = Exp . fold_exps b ~ init : z ~ f in