[sledge] Refactor: Move difference from Equality to Context

Summary:
There is nothing specific to the Ses representation in the
implementation, and no uses within Ses.

Reviewed By: jvillard

Differential Revision: D22571150

fbshipit-source-id: 8952f0301
master
Josh Berdine 4 years ago committed by Facebook GitHub Bot
parent fbc4f704ca
commit c9fa894a31

@ -1215,7 +1215,7 @@ module Context = struct
let entails_eq x e f = Ses.Equality.entails_eq x (to_ses e) (to_ses f)
let normalize x e = ses_map (Ses.Equality.normalize x) e
let normalizef x e = f_ses_map (Ses.Equality.normalize x) e
let difference x e f = Ses.Equality.difference x (to_ses e) (to_ses f)
let difference x e f = Term.d_int (normalize x (Term.sub e f))
let fold_terms ~init x ~f =
Ses.Equality.fold_terms x ~init ~f:(fun s e -> f s (of_ses e))

@ -0,0 +1,116 @@
(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
let%test_module _ =
( module struct
open Fol
open Context
let () = Trace.init ~margin:68 ()
(* let () =
* Trace.init ~margin:160
* ~config:(Result.ok_exn (Trace.parse "+Fol"))
* ()
*
* [@@@warning "-32"] *)
let printf pp = Format.printf "@\n%a@." pp
let pp = printf pp
let pp_classes = Format.printf "@\n@[<hv> %a@]@." pp_classes
let ( ! ) i = Term.integer (Z.of_int i)
let ( + ) = Term.add
let ( - ) = Term.sub
(* let ( * ) i e = Term.mulq (Q.of_int i) e *)
let wrt = Var.Set.empty
let t_, wrt = Var.fresh "t" ~wrt
(* let u_, wrt = Var.fresh "u" ~wrt *)
(* let v_, wrt = Var.fresh "v" ~wrt *)
let w_, wrt = Var.fresh "w" ~wrt
let x_, wrt = Var.fresh "x" ~wrt
let y_, wrt = Var.fresh "y" ~wrt
let z_, wrt = Var.fresh "z" ~wrt
let t = Term.var t_
(* let u = Term.var u_ *)
(* let v = Term.var v_ *)
let w = Term.var w_
let x = Term.var x_
let y = Term.var y_
let z = Term.var z_
let f = Term.mul t
(* let g = Term.mul u *)
let of_eqs l =
List.fold ~init:(wrt, true_)
~f:(fun (us, r) (a, b) -> and_formula us (Formula.eq a b) r)
l
|> snd
(* let and_eq a b r = and_formula wrt (Formula.eq a b) r |> snd *)
(* let and_ r s = and_ wrt r s |> snd *)
let or_ r s = orN wrt [r; s] |> snd
let r0 = true_
let%test _ = difference r0 (f x) (f x) |> Poly.equal (Some (Z.of_int 0))
let%test _ = difference r0 !4 !3 |> Poly.equal (Some (Z.of_int 1))
let r1 = of_eqs [(x, y)]
let r2 = of_eqs [(x, y); (f x, y); (f y, z)]
let%test _ = difference (or_ r1 r2) x z |> Poly.equal None
let r4 = of_eqs [(w + !2, x - !3); (x - !5, y + !7); (y, z - !4)]
let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5))
let r9 = of_eqs [(x, z - !16)]
let%expect_test _ =
pp_classes r9 ;
pp r9 ;
[%expect
{|
(-16 + %z_5) = %x_3
{sat= true;
rep= [[%x_3 (%z_5 + -16)]; [%z_5 ]; [-1 ]; [0 ]]} |}]
let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
let r10 = of_eqs [(!16, z - x)]
let%expect_test _ =
pp_classes r10 ;
pp r10 ;
Format.printf "@.%a@." Term.pp (z - (x + !8)) ;
Format.printf "@.%a@." Term.pp (normalize r10 (z - (x + !8))) ;
Format.printf "@.%a@." Term.pp (x + !8 - z) ;
Format.printf "@.%a@." Term.pp (normalize r10 (x + !8 - z)) ;
[%expect
{|
(-16 + %z_5) = %x_3
{sat= true;
rep= [[%x_3 (%z_5 + -16)]; [%z_5 ]; [-1 ]; [0 ]]}
(%z_5 - (%x_3 + 8))
8
((%x_3 + 8) - %z_5)
-8 |}]
let%test _ = difference r10 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
let%test _ =
difference r10 (x + !8) z |> Poly.equal (Some (Z.of_int (-8)))
end )

@ -0,0 +1,6 @@
(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)

@ -588,20 +588,6 @@ let fold_uses_of r t ~init ~f =
let f trm s = fold_ trm ~init:s ~f in
f trm (f rep s) )
let difference r a b =
[%Trace.call fun {pf} -> pf "%a@ %a@ %a" Term.pp a Term.pp b pp r]
;
let a = canon r a in
let b = canon r b in
( if Term.equal a b then Some Z.zero
else
match normalize r (Term.sub a b) with
| Integer {data} -> Some data
| _ -> None )
|>
[%Trace.retn fun {pf} ->
function Some d -> pf "%a" Z.pp_print d | None -> pf ""]
let apply_subst us s r =
[%Trace.call fun {pf} -> pf "%a@ %a" Subst.pp s pp r]
;

@ -68,11 +68,6 @@ val normalize : t -> Term.t -> Term.t
relation, where [e'] and its subterms are expressed in terms of the
relation's canonical representatives of each equivalence class. *)
val difference : t -> Term.t -> Term.t -> Z.t option
(** The difference as an offset. [difference r a b = Some k] if [r] implies
[a = b+k], or [None] if [a] and [b] are not equal up to an integer
offset. *)
val fold_terms : t -> init:'a -> f:('a -> Term.t -> 'a) -> 'a
(** Solution Substitutions *)

@ -111,9 +111,6 @@ let%test_module _ =
pp_classes r0 ;
[%expect {||}]
let%test _ = difference r0 (f x) (f x) |> Poly.equal (Some (Z.of_int 0))
let%test _ = difference r0 !4 !3 |> Poly.equal (Some (Z.of_int 1))
let r1 = of_eqs [(x, y)]
let%expect_test _ =
@ -152,7 +149,6 @@ let%test_module _ =
let%test _ = entails_eq r2 (f y) y
let%test _ = entails_eq r2 (f x) (f z)
let%test _ = entails_eq r2 (g x y) (g z y)
let%test _ = difference (or_ r1 r2) x z |> Poly.equal None
let%expect_test _ =
let r = of_eqs [(w, y); (y, z)] in
@ -222,7 +218,6 @@ let%test_module _ =
[0 ]]} |}]
let%test _ = entails_eq r4 x (w + !5)
let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5))
let r5 = of_eqs [(x, y); (g w x, y); (g w y, f z)]
@ -324,49 +319,6 @@ let%test_module _ =
let%test _ = entails_eq r8 y !14
let r9 = of_eqs [(x, z - !16)]
let%expect_test _ =
pp_classes r9 ;
pp r9 ;
[%expect
{|
(%z_7 + -16) = %x_5
{sat= true;
rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]; [-1 ]; [0 ]]} |}]
let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
let r10 = of_eqs [(!16, z - x)]
let%expect_test _ =
pp_classes r10 ;
pp r10 ;
Format.printf "@.%a@." Term.pp (z - (x + !8)) ;
Format.printf "@.%a@." Term.pp (normalize r10 (z - (x + !8))) ;
Format.printf "@.%a@." Term.pp (x + !8 - z) ;
Format.printf "@.%a@." Term.pp (normalize r10 (x + !8 - z)) ;
[%expect
{|
(%z_7 + -16) = %x_5
{sat= true;
rep= [[%x_5 (%z_7 + -16)]; [%z_7 ]; [-1 ]; [0 ]]}
(-1 × %x_5 + %z_7 + -8)
8
(%x_5 + -1 × %z_7 + 8)
-8 |}]
let%test _ = difference r10 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
let%test _ =
difference r10 (x + !8) z |> Poly.equal (Some (Z.of_int (-8)))
let r11 = of_eqs [(!16, z - x); (x + !8 - z, z - !16 + !8 - z)]
let%expect_test _ =

Loading…
Cancel
Save