@ -9,7 +9,7 @@
open Exp
(* * Classification of Terms by Theory *)
(* Classification of Terms ================================================ *)
type kind = Interpreted | Atomic | Uninterpreted
[ @@ deriving compare , equal ]
@ -34,7 +34,8 @@ let rec max_solvables e =
let fold_max_solvables e s ~ f = Iter . fold ~ f ( max_solvables e ) s
(* * Solution Substitutions *)
(* Solution Substitutions ================================================= *)
module Subst : sig
type t [ @@ deriving compare , equal , sexp ]
@ -58,7 +59,6 @@ module Subst : sig
val extend : Trm . t -> t -> t option
val map_entries : f : ( Trm . t -> Trm . t ) -> t -> t
val to_iter : t -> ( Trm . t * Trm . t ) iter
val fv : t -> Var . Set . t
val partition_valid : Var . Set . t -> t -> t * Var . Set . t * t
(* direct representation manipulation *)
@ -84,14 +84,6 @@ end = struct
let for_alli = Trm . Map . for_alli
let to_iter = Trm . Map . to_iter
let vars s =
s
| > to_iter
| > Iter . flat_map ~ f : ( fun ( k , v ) ->
Iter . append ( Trm . vars k ) ( Trm . vars v ) )
let fv s = Var . Set . of_iter ( vars s )
(* * look up a term in a substitution *)
let apply s a = Trm . Map . find a s | > Option . value ~ default : a
@ -126,7 +118,7 @@ end = struct
| _ when Trm . equal key data -> r
| _ ->
assert (
( not ( Trm . Map . mem key r ) )
Option . for_all ~ f : ( Trm . equal key ) ( Trm . Map . find key r )
| | fail " domains intersect: %a " Trm . pp key () ) ;
let s = Trm . Map . singleton key data in
let r' = Trm . Map . map_endo ~ f : ( norm s ) r in
@ -208,7 +200,7 @@ end = struct
let remove = Trm . Map . remove
end
(* * Theory Solver *)
(* Theory Solver ========================================================== *)
(* * prefer representative terms that are minimal in the order s.t. Var <
Sized < Extract < Concat < others , then using height of sequence
@ -235,155 +227,163 @@ let orient e f =
| Zero -> None
| Pos -> Some ( f , e )
let norm ( _ , _ , s ) e = Subst . norm s e
let compose1 ~ var ~ rep ( us , xs , s ) =
let s = Subst . compose1 ~ key : var ~ data : rep s in
Some ( us , xs , s )
let fresh name ( wrt , xs , s ) =
let x , wrt = Var . fresh name ~ wrt in
let xs = Var . Set . add x xs in
( Trm . var x , ( wrt , xs , s ) )
type solve_state =
{ wrt : Var . Set . t
; no_fresh : bool
; fresh : Var . Set . t
; solved : ( Trm . t * Trm . t ) list option
; pending : ( Trm . t * Trm . t ) list }
let pp_solve_state ppf = function
| { solved = None } -> Format . fprintf ppf " unsat "
| { solved = Some solved ; fresh ; pending } ->
Format . fprintf ppf " %a%a : %a " Var . Set . pp_xs fresh
( List . pp " ;@ " ( fun ppf ( var , rep ) ->
Format . fprintf ppf " @[%a ↦ %a@] " Trm . pp var Trm . pp rep ) )
solved
( List . pp " ;@ " ( fun ppf ( a , b ) ->
Format . fprintf ppf " @[%a = %a@] " Trm . pp a Trm . pp b ) )
pending
let add_solved ~ var ~ rep s =
match s with
| { solved = None } -> s
| { solved = Some solved } -> { s with solved = Some ( ( var , rep ) :: solved ) }
let add_pending a b s = { s with pending = ( a , b ) :: s . pending }
let fresh name s =
if s . no_fresh then None
else
let x , wrt = Var . fresh name ~ wrt : s . wrt in
let fresh = Var . Set . add x s . fresh in
Some ( Trm . var x , { s with wrt ; fresh } )
let solve_poly p q s =
[ % trace ]
~ call : ( fun { pf } -> pf " @ %a = %a " Trm . pp p Trm . pp q )
~ retn : ( fun { pf } -> function
| Some ( _ , xs , s ) -> pf " %a%a " Var . Set . pp_xs xs Subst . pp s
| None -> pf " false " )
~ retn : ( fun { pf } -> pf " %a " pp_solve_state )
@@ fun () ->
match Trm . sub p q with
| Z z -> if Z . equal Z . zero z then Some s else None
| Var _ as var -> compose1 ~ var ~ rep : Trm . zero s
| Z z -> if Z . equal Z . zero z then s else { s with solved = None }
| Var _ as var -> add_solved ~ var ~ rep : Trm . zero s
| p_q -> (
match Trm . Arith . solve_zero_eq p_q with
| Some ( var , rep ) ->
compose1 ~ var : ( Trm . arith var ) ~ rep : ( Trm . arith rep ) s
| None -> compose1 ~ var : p_q ~ rep : Trm . zero s )
add_solved ~ var : ( Trm . arith var ) ~ rep : ( Trm . arith rep ) s
| None -> add_solved ~ var : p_q ~ rep : Trm . zero s )
(* α [o,l ) = β ==> l = |β| ∧ α = ( ⟨n,c⟩[0,o ) ^ β ^ ⟨n,c⟩[o+l,n-o-l ) ) where n
= | α | and c fresh * )
let rec solve_extract ? ( no_fresh = false ) a o l b s =
let solve_extract a o l b s =
[ % trace ]
~ call : ( fun { pf } ->
pf " @ %a = %a@ %a%a " Trm . pp
( Trm . extract ~ seq : a ~ off : o ~ len : l )
Trm . pp b Var . Set . pp_xs ( snd3 s ) Subst . pp ( trd3 s ) )
~ retn : ( fun { pf } -> function
| Some ( _ , xs , s ) -> pf " %a%a " Var . Set . pp_xs xs Subst . pp s
| None -> pf " false " )
pf " @ %a = %a " Trm . pp ( Trm . extract ~ seq : a ~ off : o ~ len : l ) Trm . pp b )
~ retn : ( fun { pf } -> pf " %a " pp_solve_state )
@@ fun () ->
if no_fresh then Some s
else
let n = Trm . seq_size_exn a in
let c , s = fresh " c " s in
let n_c = Trm . sized ~ siz : n ~ seq : c in
let o_l = Trm . add o l in
let n_o_l = Trm . sub n o_l in
let c0 = Trm . extract ~ seq : n_c ~ off : Trm . zero ~ len : o in
let c1 = Trm . extract ~ seq : n_c ~ off : o_l ~ len : n_o_l in
let b , s =
match Trm . seq_size b with
| None -> ( Trm . sized ~ siz : l ~ seq : b , Some s )
| Some m -> ( b , solve_ l m s )
in
s > > = solve_ a ( Trm . concat [| c0 ; b ; c1 |] )
match fresh " c " s with
| None -> s
| Some ( c , s ) ->
let n = Trm . seq_size_exn a in
let n_c = Trm . sized ~ siz : n ~ seq : c in
let o_l = Trm . add o l in
let n_o_l = Trm . sub n o_l in
let c0 = Trm . extract ~ seq : n_c ~ off : Trm . zero ~ len : o in
let c1 = Trm . extract ~ seq : n_c ~ off : o_l ~ len : n_o_l in
let b , s =
match Trm . seq_size b with
| None -> ( Trm . sized ~ siz : l ~ seq : b , s )
| Some m -> ( b , add_pending l m s )
in
add_pending a ( Trm . concat [| c0 ; b ; c1 |] ) s
(* α₀^…^αᵢ^αⱼ^…^αᵥ = β ==> |α₀^…^αᵥ| = |β| ∧ … ∧ αⱼ = β[n₀+…+nᵢ,nⱼ ) ∧ …
where n ₓ ≡ | α ₓ | and m = | β | * )
and solve_concat ? no_fresh a0V b m s =
let solve_concat a0V b m s =
[ % trace ]
~ call : ( fun { pf } ->
pf " @ %a = %a@ %a%a " Trm . pp ( Trm . concat a0V ) Trm . pp b Var . Set . pp_xs
( snd3 s ) Subst . pp ( trd3 s ) )
~ retn : ( fun { pf } -> function
| Some ( _ , xs , s ) -> pf " %a%a " Var . Set . pp_xs xs Subst . pp s
| None -> pf " false " )
~ call : ( fun { pf } -> pf " @ %a = %a " Trm . pp ( Trm . concat a0V ) Trm . pp b )
~ retn : ( fun { pf } -> pf " %a " pp_solve_state )
@@ fun () ->
Iter . fold_until ( Array . to_iter a0V ) ( s , Trm . zero )
~ f : ( fun aJ ( s , oI ) ->
let nJ = Trm . seq_size_exn aJ in
let oJ = Trm . add oI nJ in
match solve_ ? no_fresh aJ ( Trm . extract ~ seq : b ~ off : oI ~ len : nJ ) s with
| Some s -> ` Continue ( s , oJ )
| None -> ` Stop None )
~ finish : ( fun ( s , n0V ) -> solve_ ? no_fresh n0V m s )
and solve_ ? no_fresh d e s =
[ % Trace . call fun { pf } ->
pf " @ %a@[%a@ %a@ %a@] " Var . Set . pp_xs ( snd3 s ) Trm . pp d Trm . pp e
Subst . pp ( trd3 s ) ]
;
( match orient ( norm s d ) ( norm s e ) with
let s , n0V =
Iter . fold ( Array . to_iter a0V ) ( s , Trm . zero ) ~ f : ( fun aJ ( s , oI ) ->
let nJ = Trm . seq_size_exn aJ in
let oJ = Trm . add oI nJ in
let s = add_pending aJ ( Trm . extract ~ seq : b ~ off : oI ~ len : nJ ) s in
( s , oJ ) )
in
add_pending n0V m s
let solve_ d e s =
[ % trace ]
~ call : ( fun { pf } -> pf " @ %a = %a " Trm . pp d Trm . pp e )
~ retn : ( fun { pf } -> pf " %a " pp_solve_state )
@@ fun () ->
match orient d e with
(* e' = f' ==> true when e' ≡ f' *)
| None -> Some s
| None -> s
(* i = j ==> false when i ≠ j *)
| Some ( Z _ , Z _ ) | Some ( Q _ , Q _ ) -> None
| Some ( Z _ , Z _ ) | Some ( Q _ , Q _ ) -> { s with solved = None }
(*
* Concat
* )
(* ⟨0,a⟩ = β ==> a = β = ⟨⟩ *)
| Some ( Sized { siz = n ; seq = a } , b ) when n = = Trm . zero ->
s
| > solve_ ? no_fresh a ( Trm . concat [| |] )
>> = solve_ ? no_fresh b ( Trm . concat [| |] )
| > add_pending a ( Trm . concat [| |] )
|> add_pending b ( Trm . concat [| |] )
| Some ( b , Sized { siz = n ; seq = a } ) when n = = Trm . zero ->
s
| > solve_ ? no_fresh a ( Trm . concat [| |] )
>> = solve_ ? no_fresh b ( Trm . concat [| |] )
| > add_pending a ( Trm . concat [| |] )
|> add_pending b ( Trm . concat [| |] )
(* ⟨n,0⟩ = α₀^…^αᵥ ==> … ∧ αⱼ = ⟨n,0⟩[n₀+…+nᵢ,nⱼ ) ∧ … *)
| Some ( ( Sized { siz = n ; seq } as b ) , Concat a0V ) when seq = = Trm . zero ->
solve_concat ? no_fresh a0V b n s
solve_concat a0V b n s
(* ⟨n,e^⟩ = α₀^…^αᵥ ==> … ∧ αⱼ = ⟨n,e^⟩[n₀+…+nᵢ,nⱼ ) ∧ … *)
| Some ( ( Sized { siz = n ; seq = Splat _ } as b ) , Concat a0V ) ->
solve_concat ? no_fresh a0V b n s
solve_concat a0V b n s
| Some ( ( Var _ as v ) , ( Concat a0V as c ) ) ->
if not ( Var . Set . mem ( Var . of_ v ) ( Trm . fv c ) ) then
(* v = α₀^…^αᵥ ==> v ↦ α₀^…^αᵥ when v ∉ fv ( α₀^…^αᵥ ) *)
compose1 ~ var : v ~ rep : c s
add_solved ~ var : v ~ rep : c s
else
(* v = α₀^…^αᵥ ==> ⟨|α₀^…^αᵥ|,v⟩ = α₀^…^αᵥ when v ∈ fv ( α₀^…^αᵥ ) *)
let m = Trm . seq_size_exn c in
solve_concat ? no_fresh a0V ( Trm . sized ~ siz : m ~ seq : v ) m s
solve_concat a0V ( Trm . sized ~ siz : m ~ seq : v ) m s
(* α₀^…^αᵥ = β₀^…^βᵤ ==> … ∧ αⱼ = ( β₀^…^βᵤ ) [n₀+…+nᵢ,nⱼ ) ∧ … *)
| Some ( Concat a0V , ( Concat _ as c ) ) ->
solve_concat ? no_fresh a0V c ( Trm . seq_size_exn c ) s
solve_concat a0V c ( Trm . seq_size_exn c ) s
(* α [o,l ) = α₀^…^αᵥ ==> … ∧ αⱼ = α [o,l ) [n₀+…+nᵢ,nⱼ ) ∧ … *)
| Some ( ( Extract { len = l } as e ) , Concat a0V ) ->
solve_concat ? no_fresh a0V e l s
| Some ( ( Extract { len = l } as e ) , Concat a0V ) -> solve_concat a0V e l s
(*
* Extract
* )
| Some ( ( Var _ as v ) , ( Extract { len = l } as e ) ) ->
if not ( Var . Set . mem ( Var . of_ v ) ( Trm . fv e ) ) then
(* v = α [o,l ) ==> v ↦ α [o,l ) when v ∉ fv ( α [o,l) ) *)
compose1 ~ var : v ~ rep : e s
add_solved ~ var : v ~ rep : e s
else
(* v = α [o,l ) ==> α [o,l ) ↦ ⟨l,v⟩ when v ∈ fv ( α [o,l) ) *)
compose1 ~ var : e ~ rep : ( Trm . sized ~ siz : l ~ seq : v ) s
add_solved ~ var : e ~ rep : ( Trm . sized ~ siz : l ~ seq : v ) s
(* α [o,l ) = β ==> … ∧ α = _^β^_ *)
| Some ( Extract { seq = a ; off = o ; len = l } , e ) ->
solve_extract ? no_fresh a o l e s
| Some ( Extract { seq = a ; off = o ; len = l } , e ) -> solve_extract a o l e s
(*
* Sized
* )
(* v = ⟨n,a⟩ ==> v = a *)
| Some ( ( Var _ as v ) , Sized { seq = a } ) -> s | > solve_ ? no_fresh v a
| Some ( ( Var _ as v ) , Sized { seq = a } ) -> s | > add_pending v a
(* ⟨n,a⟩ = ⟨m,b⟩ ==> n = m ∧ a = β *)
| Some ( Sized { siz = n ; seq = a } , Sized { siz = m ; seq = b } ) ->
s | > solve_ ? no_fresh n m > > = solve_ ? no_fresh a b
s | > add_pending n m | > add_pending a b
(* ⟨n,a⟩ = β ==> n = |β| ∧ a = β *)
| Some ( Sized { siz = n ; seq = a } , b ) ->
( match Trm . seq_size b with
| None -> Some s
| Some m -> solve_ ? no_fresh n m s )
> > = solve_ ? no_fresh a b
s
| > Option . fold ~ f : ( add_pending n ) ( Trm . seq_size b )
| > add_pending a b
(*
* Splat
* )
(* a^ = b^ ==> a = b *)
| Some ( Splat a , Splat b ) -> s | > solve_ ? no_fresh a b
| Some ( Splat a , Splat b ) -> s | > add_pending a b
(*
* Arithmetic
* )
@ -398,27 +398,16 @@ and solve_ ?no_fresh d e s =
| Some ( rep , var ) ->
assert ( not ( is_interpreted var ) ) ;
assert ( not ( is_interpreted rep ) ) ;
compose1 ~ var ~ rep s )
| >
[ % Trace . retn fun { pf } ->
function
| Some ( _ , xs , s ) -> pf " %a%a " Var . Set . pp_xs xs Subst . pp s
| None -> pf " false " ]
add_solved ~ var ~ rep s
let solve ~ wrt ~ xs d e =
[ % Trace . call fun { pf } -> pf " @ %a@ %a " Trm . pp d Trm . pp e ]
;
( solve_ d e ( wrt , xs , Subst . empty )
| > = fun ( _ , xs , s ) ->
let xs = Var . Set . inter xs ( Subst . fv s ) in
( xs , s ) )
| >
[ % Trace . retn fun { pf } ->
function
| Some ( xs , s ) -> pf " %a%a " Var . Set . pp_xs xs Subst . pp s
| None -> pf " false " ]
let solve ~ wrt ~ xs d e pending =
[ % trace ]
~ call : ( fun { pf } -> pf " @ %a@ %a " Trm . pp d Trm . pp e )
~ retn : ( fun { pf } -> pf " %a " pp_solve_state )
@@ fun () ->
solve_ d e { wrt ; no_fresh = false ; fresh = xs ; solved = Some [] ; pending }
(* * Equality classes *)
(* Equality classes ======================================================= *)
module Cls : sig
type t [ @@ deriving equal ]
@ -460,7 +449,7 @@ end = struct
let pp_diff = List . pp_diff ~ cmp : Trm . compare " @ = " Trm . pp
end
(* * Equality Relations *)
(* Conjunctions of atomic formula assumptions ============================= *)
(* * see also [invariant] *)
type t =
@ -470,7 +459,10 @@ type t =
; rep : Subst . t
(* * functional set of oriented equations: map [a] to [a'],
indicating that [ a = a' ] holds , and that [ a' ] is the
' rep ( resentative ) ' of [ a ] * ) }
' rep ( resentative ) ' of [ a ] * )
; pnd : ( Trm . t * Trm . t ) list
(* * pending equations to add ( once invariants are reestablished ) *)
}
[ @@ deriving compare , equal , sexp ]
let classes r =
@ -484,9 +476,12 @@ let cls_of r e =
let e' = Subst . apply r . rep e in
Trm . Map . find e' ( classes r ) | > Option . value ~ default : ( Cls . of_ e' )
(* * Pretty-printing *)
(* Pretty-printing ======================================================== *)
let pp_eq fs ( e , f ) = Format . fprintf fs " @[%a = %a@] " Trm . pp e Trm . pp f
let pp_pnd = List . pp " ;@ " pp_eq
let pp_raw fs { sat ; rep } =
let pp_raw fs { sat ; rep ; pnd } =
let pp_alist pp_k pp_v fs alist =
let pp_assoc fs ( k , v ) =
Format . fprintf fs " [@[%a@ @<2>↦ %a@]] " pp_k k pp_v ( k , v )
@ -494,9 +489,14 @@ let pp_raw fs {sat; rep} =
Format . fprintf fs " [@[<hv>%a@]] " ( List . pp " ;@ " pp_assoc ) alist
in
let pp_term_v fs ( k , v ) = if not ( Trm . equal k v ) then Trm . pp fs v in
Format . fprintf fs " @[{@[<hv>sat= %b;@ rep= %a@]}@] " sat
let pp_pnd fs pnd =
if not ( List . is_empty pnd ) then
Format . fprintf fs " ;@ pnd= @[%a@] " pp_pnd pnd
in
Format . fprintf fs " @[{@[<hv>sat= %b;@ rep= %a%a@]}@] " sat
( pp_alist Trm . pp pp_term_v )
( Iter . to_list ( Subst . to_iter rep ) )
pp_pnd pnd
let pp_diff fs ( r , s ) =
let pp_sat fs =
@ -505,9 +505,14 @@ let pp_diff fs (r, s) =
in
let pp_rep fs =
if not ( Subst . is_empty r . rep ) then
Format . fprintf fs " rep= %a " Subst . pp_diff ( r . rep , s . rep )
Format . fprintf fs " rep= %a ;@ " Subst . pp_diff ( r . rep , s . rep )
in
Format . fprintf fs " @[{@[<hv>%t%t@]}@] " pp_sat pp_rep
let pp_pnd fs =
Format . fprintf fs " pnd= @[%a@] "
( List . pp_diff ~ cmp : [ % compare : Trm . t * Trm . t ] " ;@ " pp_eq )
( r . pnd , s . pnd )
in
Format . fprintf fs " @[{@[<hv>%t%t%t@]}@] " pp_sat pp_rep pp_pnd
let ppx_classes x fs clss =
List . pp " @ @<2>∧ "
@ -548,7 +553,7 @@ let ppx var_strength fs clss noneqs =
" @ @<2>∧ " ( Fml . ppx var_strength ) fs noneqs ~ suf : " @] " ;
first && List . is_empty noneqs
(* * Basic queries *)
(* Basic queries ========================================================== *)
(* * test membership in carrier *)
let in_car r e = Subst . mem e r . rep
@ -560,7 +565,7 @@ let semi_congruent r a' b = Trm.equal a' (Trm.map ~f:(Subst.norm r.rep) b)
(* * terms are congruent if equal after normalizing subterms *)
let congruent r a b = semi_congruent r ( Trm . map ~ f : ( Subst . norm r . rep ) a ) b
(* * Invariant *)
(* Invariant ============================================================== *)
let pre_invariant r =
let @ () = Invariant . invariant [ % here ] r [ % sexp_of : t ] in
@ -586,6 +591,7 @@ let pre_invariant r =
let invariant r =
let @ () = Invariant . invariant [ % here ] r [ % sexp_of : t ] in
pre_invariant r ;
assert ( List . is_empty r . pnd ) ;
assert (
( not r . sat )
| | Subst . for_alli r . rep ~ f : ( fun ~ key : a ~ data : a' ->
@ -596,13 +602,44 @@ let invariant r =
| | fail " not congruent %a@ %a@ in@ %a " Trm . pp a Trm . pp b pp r
() ) ) )
(* * Core operations *)
(* Representation helpers ================================================= *)
let add_to_pnd a a' x =
if Trm . equal a a' then x else { x with pnd = ( a , a' ) :: x . pnd }
(* Propagation ============================================================ *)
let propagate1 ( trm , rep ) x =
[ % trace ]
~ call : ( fun { pf } ->
pf " @ @[%a ↦ %a@]@ %a " Trm . pp trm Trm . pp rep pp_raw x )
~ retn : ( fun { pf } -> pf " %a " pp_raw )
@@ fun () ->
let rep = Subst . compose1 ~ key : trm ~ data : rep x . rep in
{ x with rep }
let rec propagate ~ wrt x =
[ % trace ]
~ call : ( fun { pf } -> pf " @ %a " pp_raw x )
~ retn : ( fun { pf } -> pf " %a " pp_raw )
@@ fun () ->
match x . pnd with
| ( a , b ) :: pnd -> (
let a' = Subst . norm x . rep a in
let b' = Subst . norm x . rep b in
match solve ~ wrt ~ xs : x . xs a' b' pnd with
| { solved = Some solved ; wrt ; fresh ; pending } ->
let xs = Var . Set . union x . xs fresh in
let x = { x with xs ; pnd = pending } in
propagate ~ wrt ( List . fold ~ f : propagate1 solved x )
| { solved = None } -> { x with sat = false ; pnd = [] } )
| [] -> x
(* Core operations ======================================================== *)
let empty =
let rep = Subst . empty in
(* let rep = Option.get_exn ( Subst.extend Trm.true_ rep ) in
* let rep = Option . get_exn ( Subst . extend Trm . false_ rep ) in * )
{ xs = Var . Set . empty ; sat = true ; rep } | > check invariant
{ xs = Var . Set . empty ; sat = true ; rep ; pnd = [] } | > check invariant
let unsat = { empty with sat = false }
@ -656,17 +693,13 @@ let extend a r =
let rep = extend_ a r . rep in
if rep = = r . rep then r else { r with rep } | > check pre_invariant
let merge ~ wrt a b r =
[ % Trace . call fun { pf } -> pf " @ %a@ %a@ %a " Trm . pp a Trm . pp b pp r ]
;
( match solve ~ wrt ~ xs : r . xs a b with
| Some ( xs , s ) ->
{ r with xs = Var . Set . union r . xs xs ; rep = Subst . compose r . rep s }
| None -> { r with sat = false } )
| >
[ % Trace . retn fun { pf } r' ->
pf " %a " pp_diff ( r , r' ) ;
pre_invariant r' ]
let merge ~ wrt a b x =
[ % trace ]
~ call : ( fun { pf } -> pf " @ %a@ %a@ %a " Trm . pp a Trm . pp b pp x )
~ retn : ( fun { pf } x' ->
pf " %a " pp_diff ( x , x' ) ;
pre_invariant x' )
@@ fun () -> propagate ~ wrt ( add_to_pnd a b x )
(* * find an unproved equation between congruent terms *)
let find_missing r =
@ -684,12 +717,12 @@ let find_missing r =
in
Option . return_if need_a'_eq_b' ( a' , b' ) ) )
let rec close ~ wrt r =
if not r. sat then r
let rec close ~ wrt x =
if not x. sat then x
else
match find_missing r with
| Some ( a' , b' ) -> close ~ wrt ( merge ~ wrt a' b' r )
| None -> r
match find_missing x with
| Some ( a' , b' ) -> close ~ wrt ( merge ~ wrt a' b' x )
| None -> x
let close ~ wrt r =
[ % Trace . call fun { pf } -> pf " @ %a " pp r ]
@ -718,7 +751,7 @@ let and_eq_ ~wrt a b r =
let extract_xs r = ( r . xs , { r with xs = Var . Set . empty } )
(* * Exposed interface *)
(* Exposed interface ====================================================== *)
let is_empty { sat ; rep } =
sat && Subst . for_alli rep ~ f : ( fun ~ key : a ~ data : a' -> Trm . equal a a' )
@ -880,7 +913,7 @@ let trms r =
let vars r = Iter . flat_map ~ f : Trm . vars ( trms r )
let fv r = Var . Set . of_iter ( vars r )
(* * Existential Witnessing and Elimination *)
(* Existential Witnessing and Elimination ================================= *)
let subst_invariant us s0 s =
assert ( s0 = = s | | not ( Subst . equal s0 s ) ) ;
@ -922,6 +955,19 @@ let solve_poly_eq us p' q' subst =
[ % Trace . retn fun { pf } subst' ->
pf " @[%a@] " Subst . pp_diff ( subst , Option . value subst' ~ default : subst ) ]
let rec solve_pending s soln =
match s . pending with
| ( a , b ) :: pending -> (
let a' = Subst . norm soln a in
let b' = Subst . norm soln b in
match solve_ a' b' { s with pending } with
| { solved = Some solved } as s ->
solve_pending { s with solved = Some [] }
( List . fold solved soln ~ f : ( fun ( trm , rep ) soln ->
Subst . compose1 ~ key : trm ~ data : rep soln ) )
| { solved = None } -> None )
| [] -> Some soln
let solve_seq_eq ~ wrt us e' f' subst =
[ % Trace . call fun { pf } -> pf " @ %a = %a " Trm . pp e' Trm . pp f' ]
;
@ -935,11 +981,14 @@ let solve_seq_eq ~wrt us e' f' subst =
| Some n -> ( a , n )
| None -> ( Trm . sized ~ siz : n ~ seq : a , n )
in
let + _ , xs , s =
solve_concat ~ no_fresh : true ms a n ( wrt , Var . Set . empty , subst )
in
assert ( Var . Set . is_empty xs ) ;
s
solve_pending
( solve_concat ms a n
{ wrt
; no_fresh = true
; fresh = Var . Set . empty
; solved = Some []
; pending = [] } )
subst
in
( match ( ( e' : Trm . t ) , ( f' : Trm . t ) ) with
| ( Concat ms as c ) , a when x_ito_us c a ->
@ -1309,9 +1358,7 @@ let apply_and_elim ~wrt xs s r =
let r = trim ks r in
( zs , r , ks )
(*
* Replay debugging
* )
(* Replay debugging ======================================================= *)
type call =
| Add of Var . Set . t * Formula . t * t