@ -1501,9 +1501,9 @@ let rec sigma_partial_join' tenv mode (sigma_acc: Prop.sigma)
assert false (* Should be handled by a guarded case *)
with Todo . Empty ->
match sigma1_in , sigma2_in with
| _ :: _ , _ :: _ -> L . d_strln " todo is empty, but the sigmas are not " ; raise IList . Fail
| _ -> sigma_acc , sigma1_in , sigma2_in
match sigma1_in , sigma2_in with
| _ :: _ , _ :: _ -> L . d_strln " todo is empty, but the sigmas are not " ; raise IList . Fail
| _ -> sigma_acc , sigma1_in , sigma2_in
let sigma_partial_join tenv mode ( sigma1 : Prop . sigma ) ( sigma2 : Prop . sigma )
: ( Prop . sigma * Prop . sigma * Prop . sigma ) =
@ -1555,9 +1555,9 @@ let rec sigma_partial_meet' tenv (sigma_acc: Prop.sigma) (sigma1_in: Prop.sigma)
( L . d_strln " failure reason 65 " ; raise IList . Fail )
with Todo . Empty ->
match sigma1_in , sigma2_in with
| [] , [] -> sigma_acc
| _ , _ -> L . d_strln " todo is empty, but the sigmas are not " ; raise IList . Fail
match sigma1_in , sigma2_in with
| [] , [] -> sigma_acc
| _ , _ -> L . d_strln " todo is empty, but the sigmas are not " ; raise IList . Fail
let sigma_partial_meet tenv ( sigma1 : Prop . sigma ) ( sigma2 : Prop . sigma ) : Prop . sigma =
sigma_partial_meet' tenv [] sigma1 sigma2
@ -1574,11 +1574,6 @@ let pi_partial_join tenv mode
( ep1 : Prop . exposed Prop . t ) ( ep2 : Prop . exposed Prop . t )
( pi1 : Prop . pi ) ( pi2 : Prop . pi ) : Prop . pi
=
let exp_is_const = function
(* | Exp.Var id -> is_normal id *)
| Exp . Const _ -> true
(* | Exp.Lvar _ -> true *)
| _ -> false in
let get_array_len prop =
(* find some array length in the prop, to be used as heuritic for upper bound in widening *)
let len_list = ref [] in
@ -1666,18 +1661,6 @@ let pi_partial_join tenv mode
| None -> atom_list
| Some a' -> a' :: atom_list ) )
| Some a' -> a' :: atom_list in
let filter_atom = function
| Sil . Aneq ( e , e' ) | Sil . Aeq ( e , e' )
when ( exp_is_const e && exp_is_const e' ) ->
true
| Sil . Aneq ( Exp . Var _ , e' ) | Sil . Aneq ( e' , Exp . Var _ )
| Sil . Aeq ( Exp . Var _ , e' ) | Sil . Aeq ( e' , Exp . Var _ )
when ( exp_is_const e' ) ->
true
| Sil . Aneq _ -> false
| Sil . Aeq _ as e -> Prop . atom_is_inequality e
| Sil . Apred ( _ , es ) | Anpred ( _ , es ) ->
IList . for_all exp_is_const es in
begin
if Config . trace_join then begin
L . d_str " pi1: " ; Prop . d_pi pi1 ; L . d_ln () ;
@ -1687,18 +1670,15 @@ let pi_partial_join tenv mode
let p2 = Prop . normalize tenv ep2 in
IList . fold_left ( handle_atom_with_widening Lhs p2 pi2 ) [] pi1 in
if Config . trace_join then ( L . d_str " atom_list1: " ; Prop . d_pi atom_list1 ; L . d_ln () ) ;
let atom_list _combined =
let atom_list 2 =
let p1 = Prop . normalize tenv ep1 in
IList . fold_left ( handle_atom_with_widening Rhs p1 pi1 ) atom_list1 pi2 in
IList . fold_left ( handle_atom_with_widening Rhs p1 pi1 ) [] pi2 in
if Config . trace_join then
( L . d_str " atom_list_combined: " ; Prop . d_pi atom_list_combined ; L . d_ln () ) ;
let atom_list_filtered =
IList . filter filter_atom atom_list_combined in
( L . d_str " atom_list2: " ; Prop . d_pi atom_list2 ; L . d_ln () ) ;
let atom_list_combined = IList . inter Sil . atom_compare atom_list1 atom_list2 in
if Config . trace_join then
( L . d_str " atom_list_filtered: " ; Prop . d_pi atom_list_filtered ; L . d_ln () ) ;
let atom_list_res =
IList . rev atom_list_filtered in
atom_list_res
( L . d_str " atom_list_combined: " ; Prop . d_pi atom_list_combined ; L . d_ln () ) ;
atom_list_combined
end
let pi_partial_meet tenv ( p : Prop . normal Prop . t ) ( ep1 : ' a Prop . t ) ( ep2 : ' b Prop . t ) : Prop . normal Prop . t =