@ -86,7 +86,7 @@ let%test_module _ =
let r0 = true _
let % expect_test _ = pp r0 ; [ % expect { | { sat = true ; rep = [] } | } ]
let % expect_test _ = pp_classes r0 ; [ % expect { | | } ]
let % expect_test _ = pp_classes r0 ; [ % expect { | | } ]
let % test _ = difference r0 ( f x ) ( f x ) | > Poly . equal ( Some ( Z . of_int 0 ) )
let % test _ = difference r0 ! 4 ! 3 | > Poly . equal ( Some ( Z . of_int 1 ) )
@ -97,9 +97,9 @@ let%test_module _ =
pp r1 ;
[ % expect
{ |
% x_5 = % y_6
% x_5 = % y_6
{ sat = true ; rep = [ [ % y_6 ↦ % x_5 ] ] } | } ]
{ sat = true ; rep = [ [ % y_6 ↦ % x_5 ] ] } | } ]
let % test _ = entails_eq r1 x y
@ -110,10 +110,10 @@ let%test_module _ =
pp r2 ;
[ % expect
{ |
% x_5 = % y_6 = % z_7 = ( ( u8 ) % x_5 )
% x_5 = % y_6 = % z_7 = ( ( u8 ) % x_5 )
{ sat = true ;
rep = [ [ % y_6 ↦ % x_5 ] ; [ % z_7 ↦ % x_5 ] ; [ ( ( u8 ) % x_5 ) ↦ % x_5 ] ] } | } ]
{ sat = true ;
rep = [ [ % y_6 ↦ % x_5 ] ; [ % z_7 ↦ % x_5 ] ; [ ( ( u8 ) % x_5 ) ↦ % x_5 ] ] } | } ]
let % test _ = entails_eq r2 x z
let % test _ = entails_eq ( or_ r1 r2 ) x y
@ -213,14 +213,14 @@ let%test_module _ =
pp_classes ( and_eq x z r7 ) ;
[ % expect
{ |
% v_3 = % x_5 ∧ % w_4 = % y_6 = % z_7
% v_3 = % x_5 ∧ % w_4 = % y_6 = % z_7
{ sat = true ; rep = [ [ % x_5 ↦ % v_3 ] ; [ % y_6 ↦ % w_4 ] ; [ % z_7 ↦ % w_4 ] ] }
{ sat = true ; rep = [ [ % x_5 ↦ % v_3 ] ; [ % y_6 ↦ % w_4 ] ; [ % z_7 ↦ % w_4 ] ] }
{ sat = true ;
rep = [ [ % w_4 ↦ % v_3 ] ; [ % x_5 ↦ % v_3 ] ; [ % y_6 ↦ % v_3 ] ; [ % z_7 ↦ % v_3 ] ] }
{ sat = true ;
rep = [ [ % w_4 ↦ % v_3 ] ; [ % x_5 ↦ % v_3 ] ; [ % y_6 ↦ % v_3 ] ; [ % z_7 ↦ % v_3 ] ] }
% v_3 = % w_4 = % x_5 = % y_6 = % z_7 | } ]
% v_3 = % w_4 = % x_5 = % y_6 = % z_7 | } ]
let % expect_test _ =
printf ( List . pp " , " Term . pp ) ( Equality . class_of r7 t ) ;
@ -274,9 +274,9 @@ let%test_module _ =
pp r9 ;
[ % expect
{ |
( % z_7 + - 16 ) = % x_5
( % z_7 + - 16 ) = % x_5
{ sat = true ; rep = [ [ % x_5 ↦ ( % z_7 + - 16 ) ] ] } | } ]
{ sat = true ; rep = [ [ % x_5 ↦ ( % z_7 + - 16 ) ] ] } | } ]
let % test _ = difference r9 z ( x + ! 8 ) | > Poly . equal ( Some ( Z . of_int 8 ) )
@ -291,17 +291,17 @@ let%test_module _ =
Format . printf " @.%a@. " Term . pp ( normalize r10 ( x + ! 8 - z ) ) ;
[ % expect
{ |
( % z_7 + - 16 ) = % x_5
( % z_7 + - 16 ) = % x_5
{ sat = true ; rep = [ [ % x_5 ↦ ( % z_7 + - 16 ) ] ] }
{ sat = true ; rep = [ [ % x_5 ↦ ( % z_7 + - 16 ) ] ] }
( - 1 × % x_5 + % z_7 + - 8 )
( - 1 × % x_5 + % z_7 + - 8 )
8
8
( % x_5 + - 1 × % z_7 + 8 )
( % x_5 + - 1 × % z_7 + 8 )
- 8 | } ]
- 8 | } ]
let % test _ = difference r10 z ( x + ! 8 ) | > Poly . equal ( Some ( Z . of_int 8 ) )
@ -310,9 +310,7 @@ let%test_module _ =
let r11 = of_eqs [ ( ! 16 , z - x ) ; ( x + ! 8 - z , z - ! 16 + ! 8 - z ) ]
let % expect_test _ =
pp_classes r11 ; [ % expect { |
( % z_7 + - 16 ) = % x_5 | } ]
let % expect_test _ = pp_classes r11 ; [ % expect { | ( % z_7 + - 16 ) = % x_5 | } ]
let r12 = of_eqs [ ( ! 16 , z - x ) ; ( x + ! 8 - z , z + ! 16 + ! 8 - z ) ]
@ -343,8 +341,7 @@ let%test_module _ =
let % expect_test _ =
pp r14 ;
[ % expect
{ |
{ sat = true ; rep = [ [ % x_5 ↦ 1 ] ; [ ( % y_6 ≠ 0 ) ↦ - 1 ] ] } | } ]
{ | { sat = true ; rep = [ [ % x_5 ↦ 1 ] ; [ ( % y_6 ≠ 0 ) ↦ - 1 ] ] } | } ]
let % test _ = entails_eq r14 a Term . true_
let % test _ = entails_eq r14 b Term . true_
@ -366,11 +363,11 @@ let%test_module _ =
pp r16 ;
[ % expect
{ |
{ sat = false ;
rep = [ [ % x_5 ↦ ( ( ( u8 ) % y_6 ) + 3 ) ] ;
[ % y_6 ↦ ( ( ( u8 ) % y_6 ) + 2 ) ] ;
[ ( ( u8 ) ( % x_5 + - 1 ) ) ↦ ( ( ( u8 ) % y_6 ) + 5 ) ] ;
[ ( ( u8 ) % y_6 ) ↦ ] ] } | } ]
{ sat = false ;
rep = [ [ % x_5 ↦ ( ( ( u8 ) % y_6 ) + 3 ) ] ;
[ % y_6 ↦ ( ( ( u8 ) % y_6 ) + 2 ) ] ;
[ ( ( u8 ) ( % x_5 + - 1 ) ) ↦ ( ( ( u8 ) % y_6 ) + 5 ) ] ;
[ ( ( u8 ) % y_6 ) ↦ ] ] } | } ]
let % test _ = is_false r16
@ -381,11 +378,11 @@ let%test_module _ =
pp r17 ;
[ % expect
{ |
{ sat = false ;
rep = [ [ % x_5 ↦ ( ( ( u8 ) % y_6 ) + 1 ) ] ;
[ % y_6 ↦ ( ( ( u8 ) % y_6 ) + 1 ) ] ;
[ ( ( u8 ) % x_5 ) ↦ ( ( ( u8 ) % y_6 ) + 1 ) ] ;
[ ( ( u8 ) % y_6 ) ↦ ] ] } | } ]
{ sat = false ;
rep = [ [ % x_5 ↦ ( ( ( u8 ) % y_6 ) + 1 ) ] ;
[ % y_6 ↦ ( ( ( u8 ) % y_6 ) + 1 ) ] ;
[ ( ( u8 ) % x_5 ) ↦ ( ( ( u8 ) % y_6 ) + 1 ) ] ;
[ ( ( u8 ) % y_6 ) ↦ ] ] } | } ]
let % test _ = is_false r17