Summary:
OCaml 4.08 has a new warning (66) on unused `open!` statements. This
has a suboptimal interaction with `ppx_let`'s `let%map_open` which
leads to triggering the warning if any of a group of such let bindings
does not need the open.
In this case, the refactor is easy.
But, warning 66 is very dubious, so also just switch it off.
Reviewed By: jvillard
Differential Revision: D18708466
fbshipit-source-id: 77618ab6e
Summary:
Currently bitcode produced with `sledge buck link` can have missing
symbols that are clearly defined in the source. For example consider a
symbol `awesome_function` that is defined in the libraries linked in but
not in the produced binary (despite being reachable from main).
`llvm-nm` of the bitcode produced by `llvm-link` might look like:
```
U awesome_function
t awesome_function.1892
```
Some our `awesome_function` is undefined and its definition is called
`awsome_function.1892` for some reason and is local. I think this is because symbol get internalized too early and then they get renamed and somehow lost. Not sure why `llvm-link` behaves this way sometimes.
This patch removes internalization from `llvm-link` and puts it into `opt`, where it doesn't cause problems.
Reviewed By: jvillard
Differential Revision: D16494153
fbshipit-source-id: aad9053a4
Summary:
Add a global merge pass that merges globals into a single big global. It
replaces the uses of globals merged, with offsets into the big global.
Function summarisationis a big benefactor of this as it greatly reduces
the number of implicit formals (ie. globals).
Reviewed By: jvillard
Differential Revision: D16260098
fbshipit-source-id: 1b936f02f
Summary:
Trivial renamings to use the standard "libFuzzer" name instead of "lib
fuzzer".
Reviewed By: kren1
Differential Revision: D16067881
fbshipit-source-id: 3ff2a8f86
Summary:
Outputting the list of bitcode inputs when no output flag is ok for
`sledge buck bitcode` but does not make sense when it is composed as
part of other commands. So only output to stdout if `-` is given as
the output file name.
Reviewed By: kren1
Differential Revision: D16059782
fbshipit-source-id: abac9c36f
Summary:
This diff is preparation for function summarization and focuses on
function calls and function summary precondition computation.
It introduces `-function-summaries` flag behind most of functionality is
hidden, when enabled on each call
* A function summary is computed by quantifying all the non-formal/global variables
and removing all the segments that are not reachable from them
* `pre` and `foot` are computed from function summary and the calling context
by replacing formals with actuals again.
* A solver is asked if `pre` entails `foot` and a frame is printed if it
does
Currently this only works for formulas without disjunctions, so when
function summaries are enabled, that state is first moved to dnf and then
the call is done for each disjunct.
Reviewed By: ngorogiannis
Differential Revision: D15898928
fbshipit-source-id: 49d32504c
Summary: For buck targets that contain at least one of the substrings in `buck-target-pattern` option in config, change the buck target to add `_sledge` suffix.
Reviewed By: jberdine
Differential Revision: D15920018
fbshipit-source-id: 44c242e99
Summary:
:
This patch adds several passes that reduce the amount of bitcode
making sledge's job easier, more info:
https://llvm.org/docs/Passes.html
`-mergefunc`
This pass merges functions that do the same thing, this can be because of
templating or casts (ie. same functionality but on 32bit and 64bit ints,
which is the same in machine code). More details at
http://llvm.org/docs/MergeFunctions.html
Note that this pass is currently not available through C/OCaml API.
`-constmerge`
This merges constants that have the same value, this is possible to do
when the constants are internalized.
`-argpromotion`
```
This pass promotes “by reference” arguments to be “by value” arguments.
In practice, this means looking for internal functions that have pointer
arguments. If it can prove, through the use of alias analysis, that an
argument is only loaded, then it can pass the value into the function
instead of the address of the value. This can cause recursive
simplification of code and lead to the elimination of allocas
(especially in C++ template code like the STL).
```
`-ipsccp`
```
Sparse conditional constant propagation and merging, which can be
summarized as:
Assumes values are constant unless proven otherwise
Assumes BasicBlocks are dead unless proven otherwise
Proves values to be constant, and replaces them with constants
Proves conditional branches to be unconditional
```
`-deadargelim`
Removes dead arguments of internal functions, good to run after other inter-procedural
passes. Seems to crash llvm if run directly after `ipsccp`.
Note that while this might look like doing full link-time optimisation,
we are actually picking relatively cheap optimisations that mostly look
at globals and walk their use chains. The main reason link-time
optimisations are expensive is due to inlining and then running the full
optimisation again from there.
Reviewed By: jberdine
Differential Revision: D15851408
fbshipit-source-id: be7191683
Summary:
This diff introduces a `-lib-fuzz` flag to `buck link`, which links in a
simple main that calls the LLVMFuzzerTestOneInput function, which is the
entry point of libFuzzer fuzzer.
Reviewed By: jberdine, jvillard
Differential Revision: D15821512
fbshipit-source-id: cff731ed3
Summary:
The entry point functions are used in a couple of places, this
puts them in a single source of truth in the config file.
Reviewed By: jvillard
Differential Revision: D15651976
fbshipit-source-id: a572e8d4d
Summary:
This adds a globalopt optimization pass to sledge.
Consider code like:
```
const char *a_string = "I'm a string";
int an_int = 0;
int c() {
return an_int;
}
int main() {
char *c1 = a_string;
return c();
}
```
When compiled there are 2 levels of indirection. For example
`return an_int` Get's compiled as
```
%0 = load i32, i32* an_int1
ret i32 %0
```
Global opt reduces this (if `an_int` is internal) to just
` ret i32 0`.
Similarly and more importantly
`c1 = a_string;` get's compiled into
```
@.str = private unnamed_addr constant [13 x i8] c"I'm a string\00"
a_string = dso_local global i8* getelementptr inbounds ([13 x i8], [13 x i8]* @.str, i32 0, i32 0)
%c1 = alloca i8*, align 8
%0 = load i8*, i8** a_string, align 8, !dbg !25
store i8* %0, i8** %c1, align 8, !dbg !24
```
So there is a level of indirection between `c1` and `.str` where the string is stored.
With global opt, this gets reduced to:
```
@.str = private unnamed_addr constant [13 x i8] c"I'm a string\00"
%c1 = alloca i8*, align 8
store i8* getelementptr inbounds ([13 x i8], [13 x i8]* @.str, i64 0, i64 0), i8** %c1, align 8, !dbg !23
```
and `a_string` variable gets deleted.
On sledge this has the effect of reducing the complexity of the symbolic heap significantly.
Without this optimisation, running
`sledge.dbg llvm analyze -trace Domain.call global_vars.bc`
Gives prints the following segments:
```
∧ %.str -[)-> ⟨13,{}⟩
* %a_string -[)-> ⟨8,%.str⟩
* %an_int -[)-> ⟨4,0⟩
* %c1 -[)-> ⟨8,%.str⟩
* %retval -[)-> ⟨4,0⟩
```
So there are `an_int` and `a_string` segments, which are redundant.
with the optimisation, the heap looks like:
`∧ %.str -[)-> ⟨13,{}⟩ * %c1 -[)-> ⟨8,%.str⟩ * %retval -[)-> ⟨4,0⟩`,
Where we only have the `.str` segment and the `c1` segment, which are the two we need.
Reviewed By: ngorogiannis
Differential Revision: D15649195
fbshipit-source-id: 5f71e56e8
Summary:
Change command line interface to include buck and llvm integration as
separate subcommands.
Reviewed By: kren1
Differential Revision: D15614567
fbshipit-source-id: b7618571b