Summary:
It enables the translation of casting expression. As of now, it
translates only the castings of pointers to integer types, in order to
avoid too much of change, which may mess the checkers up.
Reviewed By: jvillard
Differential Revision: D12920568
fbshipit-source-id: a5489df24
Summary:
Useful to understand the changes in the pre-analysis, or to inspect the
CFG that checkers actually get.
This means that the pre-analysis always runs when we output the dotty,
but I don't really see a reason why not. In fact, we could probably
*always* store the CFGs as pre-analysed.
Reviewed By: mbouaziz
Differential Revision: D13102952
fbshipit-source-id: 89f3102ec
Summary:
When initialising a variable via semi-exotic means, the frontend loses
the information that the variable was initialised. For instance, it
translates:
```
struct Foo { int i; };
...
Foo s = {42};
```
as:
```
s.i := 42
```
This can be confusing for backends that need to know that `s` actually
got initialised, eg pulse.
The solution implemented here is to insert of dummy call to
`__variable_initiazition`:
```
__variable_initialization(&s);
s.i := 42;
```
Then checkers can recognise that this builtin function does what its
name says.
Reviewed By: mbouaziz
Differential Revision: D12887122
fbshipit-source-id: 6e7214438
Summary:
Change the license of the source code from BSD + PATENTS to MIT.
Change `checkCopyright` to reflect the new license and learn some new file
types.
Generated with:
```
git grep BSD | xargs -n 1 ./scripts/checkCopyright -i
```
Reviewed By: jeremydubreil, mbouaziz, jberdine
Differential Revision: D8071249
fbshipit-source-id: 97ca23a
Summary:
Previously, the type of `trans_result` contained a list of SIL expressions.
However, most of the time we expect to get exactly one, and getting a different
number is a soft(!) error, usually returning `-1`.
This splits `trans_result` into `control`, which contains the information
needed for temporary computation (hence when we don't necessarily know the
return value yet), and a new version of `trans_result` that includes `control`,
the previous `exps` list but replaced by a single `return` expression instead,
and a couple other values that made sense to move out of `control`. This allows
some flexibility in the frontend compared to enforcing exactly one return
expression always: if they are not known yet we stick to `control` instead (see
eg `compute_controls_to_parent`).
This creates more garbage temporary identifiers, however they do not show up in
the final cfg. Instead, we see that temporary IDs are now often not
consecutive...
The most painful complication is in the treatment of `DeclRefExpr`, which was
actually returning *two* expressions: the method name and the `this` object.
Now the method name is a separate (optional) field in `trans_result`.
Reviewed By: mbouaziz
Differential Revision: D7881088
fbshipit-source-id: 41ad3b5
Summary:
When looking at large CFGs, at least in `xdot`, it's often difficult to find
the procedure you're looking for. Sorting the proc names puts them in
alphabetical order, which makes searching one procedure easier.
Reviewed By: mbouaziz
Differential Revision: D7758521
fbshipit-source-id: 8e9997f
Summary:
Not sure what an "iCFG" is but the dotty is only about CFGs anyway.
Diff obtained by mass-`sed`.
Reviewed By: sblackshear
Differential Revision: D6324280
fbshipit-source-id: b7603bb
Summary:
The previous domain for SIOF was duplicating some work with the generic Trace
domain, and basically was a bit confused and confusing. A sink was a set of
global accesses, and a state contains a set of sinks. Then the checker has to
needlessly jump through hoops to normalize this set of sets of accesses into a
set of accesses.
The new domain has one sink = one access, as suggested by sblackshear. This simplifies
a few things, and makes the dedup logic much easier: just grab the first report
of the list of reports for a function.
We only report on the fake procedures generated to initialise a global, and the
filtering means that we keep only one report per global.
Reviewed By: sblackshear
Differential Revision: D5932138
fbshipit-source-id: acb7285
Summary: The prune nodes where translated as `prune (expr = false)` and `prune ( expr != false)`. This case is a bit tricky to deconstruct in HIL. This diff translates the prune instructions as just `prune !expr` for the true branch and `prune expr` for the false branch.
Reviewed By: dulmarod
Differential Revision: D5832147
fbshipit-source-id: 2c3502d
Summary:
Title.
The way types are printed is completely valid, but little weird for some C++ programmers:
`int const` - same as `const int`
`int * const` - pointer is `const`, value under it is not
`int const *` - pointer is not `const`, but the value is
`int const * const` - both pointer and value are const
Reviewed By: jberdine
Differential Revision: D4962180
fbshipit-source-id: dcb02e3
Summary:
Currently cfg nodes are written into dot files in whatever order they
appear in a hash table. This seems unnecessarily sensitive, so this
diff sorts the nodes.
Reviewed By: dulmarod
Differential Revision: D4232377
fbshipit-source-id: a907cc6
Summary: These are dangerous if you are trying to compare a type to a string, and they're also unsightly.
Reviewed By: jvillard
Differential Revision: D4189956
fbshipit-source-id: 14ce127
Summary:Local variable created by conditional operator translation is now declared in scope of whole
procedure. Semantically there is no difference, hopefuly backend will not complain about this
change. Also, nullifying that variable is deferred to preanalysis instead of calling it manually
Reviewed By: jvillard
Differential Revision: D3155733
fb-gh-sync-id: 6cec8fc
fbshipit-source-id: 6cec8fc
Summary: @public
This removes the old way of finding variable declarations to create sil variables and replaces it with
a a new way based on the map from pointers to declarations.
Basically, every variable dereference contains a pointer to the variable declaration, with that we can
build the corresponding sil variable.
Reviewed By: @akotulski
Differential Revision: D2536000
fb-gh-sync-id: dd29cf9