Summary:
One standard way to schedule work is by starting a thread. We treat this by
- Treating invocations of `start` on a receiver with the `Runnable _` attribute as scheduling that runnable for parallel execution in the background (as opposed to on the UI thread).
- If `start` is used on an object of a subclass of `Thread` everything already works thanks to the `get_exp_attributes` function which will implicitly ascribe to an expression the attribute `Runnable _` if the expression points to an object with a known `run` method. This will even take care of some degree of dynamic dispatch, yay!
- If `start` is used on a `Thread` object which has been created with a constructor call provided with a `Runnable` argument, we have to appropriately model that constructor call, which is what is done in `do_call`.
Reviewed By: jvillard
Differential Revision: D18726676
fbshipit-source-id: 0bd83c28e
Summary:
A current blind spot is when object construction stores specific executors / runnables to object fields, which are then never mutated and accessed from normal methods. IOW the attributes established in the constructor are necessary to report properly inside a normal method (assuming these attributes are not invalidated by method code).
To achieve this, first we retain a subset of the final state attributes in the summary (only those that affect instance variables, in constructor methods). Then, when we analyse a non-constructor method:
- we analyse all constructors
- remove all attributes from the attribute map whose key is not an expression of the form `this.x. ...`
- re-localise all remaining keys so that they appear as rooted in the `this` local variable of the current procedure
- join (intersect) all such attribute maps
- use the result in place of initial state as far as the attribute map is concerned for the analysis of the current procedure, which can now start.
This means we can catch idioms that use side-effectful initialisation for configuring certain object fields like executors or runnables.
Reviewed By: jvillard
Differential Revision: D18707890
fbshipit-source-id: 42ac6108f
Summary: Another way to schedule work in android is by posting it to a `Handler`. A handler can be constructed out of the main looper, which forces it to schedule work on the UI thread. To model all this, we add syntactic models for getting the main looper and for creating handlers, and dataflow attributes for tracking that an expression is a looper/the main looper, or a handler constructed out of a looper.
Reviewed By: skcho
Differential Revision: D18706768
fbshipit-source-id: 7c46e6913
Summary:
Instead of trying to figure out what runnable is directly passed to an executor,
use attributes to track the flow of a runnable. This has several advantages:
- Can track runnables across function return values.
- Can somewhat overcome the information loss under dynamic dispatch.
- Unifies handling with other attributes.
Reviewed By: skcho
Differential Revision: D18672676
fbshipit-source-id: a06a0e6ff
Summary:
- Unify treatment of modelled and annotated executors by making things go through attributes.
- Add a return attribute to summaries, so that we can track flows of thread guards/executors/future stuff through returned values.
- Dispatch modeled functions to model summaries.
This will help in following diffs where runnables will also go through attributes.
Reviewed By: skcho
Differential Revision: D18660185
fbshipit-source-id: e26b1083e
Summary: When we see a call to schedule some work on an executor and we don't have evidence that it is on some specific thread (UI/BG), instead of dropping the work, assign it `UnknownThread` and treat it as running on the background by default.
Reviewed By: jvillard
Differential Revision: D18615649
fbshipit-source-id: e8bad64b6
Summary: Android may spontaneously call these methods on the UI thread, so recognize the fact.
Reviewed By: ezgicicek
Differential Revision: D18530477
fbshipit-source-id: a8a798779
Summary:
First step towards a global analysis. A new command line flag activates the step in `Driver`.
The whole-program analysis is a simple, quadratic (inefficient-as-yet), iteration over all domain elements. However, it is restricted to those elements that are explicitly scheduled to run.
Reviewed By: skcho
Differential Revision: D17787441
fbshipit-source-id: 9fecd766c