Summary:
In the new clang the parameters to these functions have notnull annotations, because of that infer tests fail. More concretely, the tests say there would be a memory leak. In the symbolic execution of those functions though, an inconsistency is created, because the parameter was nil, and the constraint argument should not be nil was also there, which leads to an error in the execution and no object is created, hence, no memory leak.
Summary:
This is the second of 3 stack diffs to deal with replacing the parser of types.
This diff is about changes to translate record types, as well as class types and enum
types. For class types and enum types we store the declaration pointer in the map of
types to find the type easier later.
For record declarations, we change the way we build record names.
Moreover, we don't translate typedefs anymore, because when we have a pointer to a typedef,
we can find the actual type it points to.
Summary:
each procedure has a different scope, so we can restart the fresh name generator and have more stable instructions in the cfg, that don't change when other procedures are changed
Summary:
The methods in objc can have the same name in the same class, but one be instance and the other class,
so that we need to take the instance flag into account when defining unique names for ObjC methods.
Summary:
This adds a sentinel check every time a function carrying a sentinel attribute
is called, regardless of whether we have a definition for that function or not.
Summary:
@public
The clang location information is described in an incremental way: each location information is a delta with respect to the previous one in the AST. This is based on a the visit of the AST nodes which corresponds to the order in which the lines are printed with the standard clang AST dump:
clang -cc1 -ast-dump filename.c
This diff adds a preprocessing phase to the front-end so that location information is composed during a visit, and explicit location information is used instead.
In the case of include files, we report the last known location before including the file.
The current file for a function is the file where it is defined. So if a function is entirely defined in a .h file, then the location information will consistently be about the .h file. If instead a function is defined in the source file being analyzed, and some AST nodes come from macro expansion, line information will refer to the original file.
The front-end tests reveal that the location information was incorrect in a few dot files.
Test Plan: arc unit, after having fixed the wrong location in the existing .dot files