Summary:
Primitive types are not annotated. Because of that, we used to implicitly derive
`DeclaredNonnull` type for them. This worked fine, but this leads to errors in Strict mode, which does
not believe DeclaredNonnull type.
Now lets offifically teach nullsafe that primitive types are
non-nullable.
Reviewed By: jvillard
Differential Revision: D18114623
fbshipit-source-id: 227217931
Summary:
This is the first take on strict mode semantics.
The main invariant of strict mode is the following:
If the function passes `NullsafeStrict` check and its return value is
NOT annotated as Nullable, then the function does not indeed return
nulls, subject to unsoundness issues (which should either be fixed, or
should rarely happen in practice).
This invariant helps the caller in two ways:
1. Dangerous usages of non strict functions are visible, so the caller is enforced to check them (via assertions or conditions), or strictify them.
2. When the function is strict, the caller does not need to worry about
being defensive.
Biggest known issues so far:
1. Condition redundant and over-annotated warnings don't fully
respect strict mode, and this leads to stupid false positives. (There is
so much more stupid false positives in condition redundant anyway, so
not particularly a big deal for now).
2. Error reporting is not specific to mode. (E.g. we don't distinct real nullables and non-trusted non-nulls, which can be misleading). To be
improved as a follow up.
Reviewed By: artempyanykh
Differential Revision: D17978166
fbshipit-source-id: d6146ad71
Summary:
Now, that we consistently use `AnnotatedType`, `AnnotatedNullability`,
and `AnnotatedSignature`, `AnnotatedField` is a natural name for this
datatype.
Together `AnnotatedSignature` and `AnnotatedField` represent two entry
points for fetching information about Java type from the codebase.
Reviewed By: artempyanykh
Differential Revision: D17570534
fbshipit-source-id: 31ef52033