Summary: Adding a test case for use after destructor for temporaries. At the moment pulse does not find it as frontend does not inject destructors for temporaries.
Reviewed By: jvillard
Differential Revision: D13506229
fbshipit-source-id: 31b9466f7
Summary:
It weakens canonical path in order to avoid an explosion of locations when a struct type has pointers to struct.
For example:
```
struct Tree {
struct Tree *root;
struct Tree *left;
struct Tree *right;
};
```
It was able to generate lots of abstract locations before this diff:
```
t->root
t->left
t->right
t->root->left
t->root->right
t->left->root
t->left->right
t->right->root
t->right->left
t->root->left->right
t->root->right->left
t->left->root->right
t->left->right->root
t->right->root->left
t->right->left->root
```
By this diff, pointer fields that have the same type are (unsoundly) canonicalized to the same one. For example,
```
t->root
t->root->left
t->root->right
t->root->left->right
t->root->right->left
```
are canonicalized to `t->root`. This is definitely unsound but I believe it is better than the location explosion by which analyses do not terminate in a reasonable time or giving a fixed limit of depth to the field access.
Reviewed By: mbouaziz
Differential Revision: D13503808
fbshipit-source-id: 867018712
Summary:
When a C++ temporary goes out of scope, tag its address in the heap with
a new attribute `AddressOfCppTemporary` so that we can later check that
we don't return it.
Reviewed By: da319
Differential Revision: D13466898
fbshipit-source-id: 8808338b4
Summary:
When assign to the special `return` variable, check that the result is
not the address of a local variable, otherwise report.
Reviewed By: ngorogiannis
Differential Revision: D13466896
fbshipit-source-id: 465da7f13
Summary: Naming it `FP_` was a mistake in the original commit that copied the tests over as pulse has never reported on that method.
Reviewed By: da319
Differential Revision: D13465324
fbshipit-source-id: f8b24ebda
Summary:
In order to avoid FPs due to lack of relational info, we apply a heuristic: proof obligations has a latest pruned values,
then it is instantiated at Call statements. If there is a bottom value in the instantiated pruned values, we can say the
program point where the proof obligation is introduced is unreachable with the given parameters of the function.
Depends on D13414441
Reviewed By: mbouaziz
Differential Revision: D13414483
fbshipit-source-id: 61bd34ebb
Summary:
It's ok to take an address of a field / array access of an invalid object.
This diff calculates the inner most dereference for an access expression starting with `&` and does not report on the dereference even if the address is invalid.
Reviewed By: jvillard
Differential Revision: D13450758
fbshipit-source-id: 18c038701
Summary:
When we create Dereference edge, we also create TakeAddress back edge. This causes false positives for stack variables. When we write to a stack variable and then take its address, the resulting address is the one from the back edge of the written value. See example `push_back_value_ok`. To solve this issue, this diff changes stack to denote a map from address of variables rather than from variables.
We still have issue for fields, see example, FP_push_back_value_field_ok. To solve this, we probably need to remove back edges.
Reviewed By: jvillard
Differential Revision: D13432415
fbshipit-source-id: 9254a1a6d
Summary:
When a lambda gets created, record the abstract addresses it captures, then
complain if we see some of them be invalidated before it is called.
Add a notion of "allocator" for reporting better messages. The messages are
still a bit sucky, will need to improve them more generally at some point.
```
jul lambda ~ infer 1 infer -g --pulse-only -- clang -std=c++11 -c infer/tests/codetoanalyze/cpp/pulse/closures.cpp
Logs in /home/jul/infer.fb/infer-out/logs
Capturing in make/cc mode...
Found 1 source file to analyze in /home/jul/infer.fb/infer-out
Found 2 issues
infer/tests/codetoanalyze/cpp/pulse/closures.cpp:21: error: USE_AFTER_DESTRUCTOR
`&(f)` accesses address `s` captured by `&(f)` as `s` invalidated by destructor call `S_~S(s)` at line 20, column 3 past its lifetime (debug: 5).
19. f = [&s] { return s.f; };
20. } // destructor for s called here
21. > return f(); // s used here
22. }
23.
infer/tests/codetoanalyze/cpp/pulse/closures.cpp:30: error: USE_AFTER_DESTRUCTOR
`&(f)` accesses address `s` captured by `&(f)` as `s` invalidated by destructor call `S_~S(s)` at line 29, column 3 past its lifetime (debug: 8).
28. f = [&] { return s.f; };
29. }
30. > return f();
31. }
32.
Summary of the reports
USE_AFTER_DESTRUCTOR: 2
```
Reviewed By: da319
Differential Revision: D13400074
fbshipit-source-id: 3c68ff4ea
Summary: Model more `std::vector` functions that can potentially invalidate references to vector's elements (https://en.cppreference.com/w/cpp/container/vector).
Reviewed By: mbouaziz
Differential Revision: D13399161
fbshipit-source-id: 95cf2cae6
Summary:
Some code calls `this->~Obj()` then proceeds to use fields in the current
object, which previously we would report as invalid uses. Assume people know
what they are doing and ignore destructor calls to `this`.
Reviewed By: mbouaziz
Differential Revision: D13401145
fbshipit-source-id: f6b0fb6ec
Summary: It weakly updates array when there are more than two contents.
Reviewed By: mbouaziz
Differential Revision: D13318443
fbshipit-source-id: fa740d8b1
Summary:
It materializes symbolic values of function parameters on-demand. The on-demand materialization is triggered when finding a value from an abstract memory and joining/widening abstract memories.
Depends on D13294630
Main idea:
* Symbolic values are on-demand-ly generated by a symbol path and its type
* In order to avoid infinite generation of symbolic values, symbol paths are canonicalized by structure types and field names (which means they are abstracted to the same value). For example, in a linked list, a symbolic value `x->next->next` is canonicalized to `x->next` when the structures (`*x` and `*x->next`) have the same structure type and the same field name (`next`).
Changes from the previous code:
* `Symbol.t` does not include `id` and `pname` for distinguishing symbols. Now, all symbols are compared by `path:SymbolPath.partial` and `bound_end`.
* `SymbolTable` is no longer used, which was used for generating symbolic values with new `id`s.
Reviewed By: mbouaziz
Differential Revision: D13294635
fbshipit-source-id: fa422f084
Summary:
`eval_locs` is like `eval |> get_all_locs` but avoids computing things that aren't necessary.
The goal was not to be an optimization but is needed for Java where array blocks don't have offsets.
Reviewed By: skcho
Differential Revision: D13190939
fbshipit-source-id: 1cc0e6338
Summary: Similarly as `std::vector::push_back`, `std::vector::reserve` can invalidate the references to elements if the new size is bigger than the existing one. More info on `std::vector::reserve`: https://en.cppreference.com/w/cpp/container/vector/reserve
Reviewed By: jvillard
Differential Revision: D13340324
fbshipit-source-id: bf99b6923
Summary: Instead of variable having the value of a single location on stack, we now allow variables to have multiple locations. Consequently, we also allow a memory location to point to a set of locations in the heap. We enforce a limit on a maximum number of locations in a set (currently 5).
Reviewed By: jvillard
Differential Revision: D13190876
fbshipit-source-id: 5cb5ba9a6
Summary:
At function calls, it copies callee's values that are reachable from parameters.
Depends on D13231291
Reviewed By: mbouaziz
Differential Revision: D13231711
fbshipit-source-id: 1e8aed1c4
Summary: It instantiates not only symbols for bound but also symbols for locations at function calls.
Reviewed By: mbouaziz
Differential Revision: D13231291
fbshipit-source-id: ce23a943b
Summary: Recent improvements in join fixed `FP_allocate_in_branch_ok` because the variable was not read after the join.
Reviewed By: mbouaziz
Differential Revision: D13233441
fbshipit-source-id: 89b701e12
Summary: Delete function that would get a linter warning or not depending on the version of Xcode.
Reviewed By: martintrojer
Differential Revision: D13215750
fbshipit-source-id: 886ce397d
Summary:
It's useful for checkers to know when variables go out of scope to
perform garbage collection in their domains, especially for complex
domains with non-trivial joins. This makes the analyses more precise at
little cost.
This could have been added as a custom function call to a builtin, but I
decided against it because this instruction doesn't have the semantics
of any function call. It's better for each checker to explicitly not
deal with the custom instruction instead.
Reviewed By: jberdine
Differential Revision: D13102951
fbshipit-source-id: 33be22fab
Summary:
Before, the liveness pre-analysis would place extra instructions in the
CFG for either:
1. marking an `Ident.t` as dead, or
2. marking a `Pvar.t` as `= 0`
But we have no way of marking pvars dead without setting them to 0. This
is bad because setting pvars to 0 is not possible everywhere they are
dead. Indeed, we only do it when we haven't seen their address being
taken anyway. This prevents the following situation, recorded in our tests:
```
int address_taken() {
int** x;
int* y;
int i = 7;
y = &i;
x = &y;
// if we don't reason about taken addresses while adding nullify instructions,
// we'll add
// `nullify(y)` here and report a false NPE on the next line
return **x;
}
```
So we want to mark pvars as dead without nullifying them. This diff
extends the `Remove_temps` SIL instruction to accept pvars as well, and
so renames it to `ExitScope`.
Reviewed By: da319
Differential Revision: D13102953
fbshipit-source-id: aa7f03a52
Summary:
It modifies sizes and offsets of array values on pointer castings.
Currently, it supports only simple castings of pointer-to-integers.
Reviewed By: mbouaziz
Differential Revision: D12920589
fbshipit-source-id: a5ba831b8
Summary:
It enables the translation of casting expression. As of now, it
translates only the castings of pointers to integer types, in order to
avoid too much of change, which may mess the checkers up.
Reviewed By: jvillard
Differential Revision: D12920568
fbshipit-source-id: a5489df24
Summary:
Useful to understand the changes in the pre-analysis, or to inspect the
CFG that checkers actually get.
This means that the pre-analysis always runs when we output the dotty,
but I don't really see a reason why not. In fact, we could probably
*always* store the CFGs as pre-analysed.
Reviewed By: mbouaziz
Differential Revision: D13102952
fbshipit-source-id: 89f3102ec
Summary: It fixes the conditions of the `check` function to address `is_collection_add` cases correctly.
Reviewed By: mbouaziz
Differential Revision: D13081281
fbshipit-source-id: 39ae5ef03
Summary:
Update clang plugin which now gives names to variables captured by lambdas that were empty before.
update-submodule: facebook-clang-plugins
Reviewed By: jvillard
Differential Revision: D12979015
fbshipit-source-id: 0b092fb24
Summary:
It turns out keeping attributes (such as invalidation facts) separate
from the memory is a bad idea and leads to loss of precision and false
positives, as seen in the new test (which previously generated a
report).
Allow me to illustrate on this example, which is a stylised version of
the issue in the added test: previously we'd have:
```
state1 = { x = 1; invalids={} }
state2 = { x = 2; invalids ={1} }
join(state1, state2) = { x = {1, 2}; invalids={{1, 2}} }
```
So even though none of the states said that `x` pointed to an invalid
location, the join state says it does because `1` and `2` have been
glommed together. The fact `x=1` from `state1` and the fact "1 is
invalid" from `state2` conspire together and `x` is now invalid even
though it shouldn't.
Instead, if we record attributes as part of the memory we get that `x`
is still valid after the join:
```
state1 = { x = (1, {}) }
state2 = { x = (2, {}) }
join(state1, state2) = { x = ({1, 2}, {}) }
```
Reviewed By: mbouaziz
Differential Revision: D12958130
fbshipit-source-id: 53dc81cc7
Summary:
I hear that this scheduler is better. I want the best scheduler
possible. Also pulse's join is a bit complex so it might matter one day.
whydididothis
Reviewed By: mbouaziz
Differential Revision: D12958131
fbshipit-source-id: 3bd77ccba
Summary: There is a bug on the instantiation of function parameters.
Reviewed By: mbouaziz
Differential Revision: D12973691
fbshipit-source-id: ca7fbc4e6
Summary: The aligned width of bool should be 1-byte, while the range of bool [0,1].
Reviewed By: jvillard
Differential Revision: D12932394
fbshipit-source-id: be1a5d6d1
Summary: For a general case of `operator=` we want to create a fresh location for the first parameter as `operator=` behaves as copy assignment.
Reviewed By: jvillard
Differential Revision: D12940635
fbshipit-source-id: 89c6e530d
Summary:
Whenever `vec.reserve(n)` is called, remember that the vector is
"reserved". When doing `vec.push_back(x)` on a reserved vector, assume
enough size has been reserved in advance and do not invalidate the
underlying array.
This gets rid of false positives.
Reviewed By: mbouaziz
Differential Revision: D12939837
fbshipit-source-id: ce6354fc5
Summary:
Instead of keeping at most one invalidation fact for each address, keep
a set of them and call them "attributes". Keeping a set of invalidation
facts is redundant since we always only want the smallest one, but
makes the implementation simpler, especially once we add more kinds of
attributes (used for modelling, see next diffs).
Reviewed By: mbouaziz
Differential Revision: D12939839
fbshipit-source-id: 4a54c2132
Summary:
Copied on the ownership checker logic: return the initial value of the
domain as return. This can probably be improved.
Reviewed By: mbouaziz
Differential Revision: D12888102
fbshipit-source-id: 9e2dac7fc
Summary:
When initialising a variable via semi-exotic means, the frontend loses
the information that the variable was initialised. For instance, it
translates:
```
struct Foo { int i; };
...
Foo s = {42};
```
as:
```
s.i := 42
```
This can be confusing for backends that need to know that `s` actually
got initialised, eg pulse.
The solution implemented here is to insert of dummy call to
`__variable_initiazition`:
```
__variable_initialization(&s);
s.i := 42;
```
Then checkers can recognise that this builtin function does what its
name says.
Reviewed By: mbouaziz
Differential Revision: D12887122
fbshipit-source-id: 6e7214438
Summary:
Now that arrays are dealt with separately (see previous diff), we can
turn the join back into an over-approximation as far as invalid
locations are concerned.
Reviewed By: skcho
Differential Revision: D12881989
fbshipit-source-id: fd85e49c0
Summary:
This prevents the join from wrongly assuming that we haven't seen a
variable on one side of the join.
Reviewed By: skcho
Differential Revision: D12881987
fbshipit-source-id: 42a776adb
Summary:
For more deduplications of issues, this diff loosens the condition of
similar bounds. The previous condition of similar bounds was too
strict, so [0,0] and [0,+oo] were not similar.
Depends on D10851762
Reviewed By: mbouaziz
Differential Revision: D10866127
fbshipit-source-id: 4ba912a88
Summary: For `operator=(lhs, rhs)` we want to model it as an assignment if rhs is materialized temporary created in the constructor.
Reviewed By: jvillard
Differential Revision: D10462510
fbshipit-source-id: 998341e69
Summary: Do not create a new location for placement new argument if it already exists.
Reviewed By: jvillard
Differential Revision: D12839942
fbshipit-source-id: 758b67a82
Summary:
In order to know whether a global variable is an integral constant
expression in C, this diff adds a field for the results of isInitICE.
The controller you requested could not be found.: facebook-clang-plugins
Reviewed By: mbouaziz
Differential Revision: D12838521
fbshipit-source-id: 388bff1f3
Summary:
Get rid of `USE_AFTER_LIFETIME`. This could be useful to deploy pulse
alongside the ownership checker too.
Reviewed By: da319
Differential Revision: D12857477
fbshipit-source-id: 8e2a2a37c
Summary:
Keep `USE_AFTER_LIFETIME` for unclassified errors (for now it contains
vector invalidation too because I can't think of a good name for
them, and maybe it makes sense to wait until we have more types of them
to decide on a name).
Reviewed By: da319
Differential Revision: D12825060
fbshipit-source-id: bd75ef698
Summary:
Getting this right will be long and complex so for now the easiest is to
underreport and only consider as invalid the addresses we know to be invalid on
both sides of a join. In fact the condition for an address to be invalid after
a join is more complex than this: it is invalid only if *all* the addresses in
its equivalence class as discovered by the join are invalid.
Reviewed By: skcho
Differential Revision: D12823925
fbshipit-source-id: 2ca109356
Summary: Similarly as for destructors, we provide an address of an object as a first parameter to constructors. When constructor is called we want to create a fresh location for a new object.
Reviewed By: jvillard
Differential Revision: D10868433
fbshipit-source-id: b60f32953
Summary: We provide an address of an object as a parameter to destructor. When destructor is called the object itself is invalidated, but not the address.
Reviewed By: jvillard
Differential Revision: D12824032
fbshipit-source-id: 516eebcf8