Summary:
It is undefined behavior to dereference end iterator.
To catch end iterator dereferencing issues we change iterator model: instead of having `internal pointer` storing the current index, we model it as a pointer to a current index. This allows us to model `end()` iterator as having an invalid pointer and there is no need to create an invalidated element in the vector itself.
Reviewed By: ezgicicek
Differential Revision: D21178441
fbshipit-source-id: fd6a94b0b
Summary: Java's iterator models were wrong. This causes `VECTOR_INVALIDATION` errors in fbandroid projects. This diff aims to fix it by modeling Java iterators with a current pointer and an underlying collection array.
Reviewed By: skcho
Differential Revision: D21448322
fbshipit-source-id: 7d44354b5
Summary:
List of things happening in this unreviewable diff:
- moved PulsePathCondition to PulseSledge
- renamed --pulse-path-conditions to --pudge
- PulsePathCondition now contains all the arithmetic of pulse
(inferbo+concrete intervals+pudge). In particular, moved arithmetic
attributes into PulsePathCondition.t. PulsePathCondition plays the
role of PulseArithmetic (combining all domains).
- added tests for a false positive involving free()
- PulseArithmetic is now just a thin wrapper around PulsePathCondition
to operate on states directly (instead of on path conditions).
- The rest is mostly moving code into PulsePathCondition (eg, from
PulseInterproc) and adjusting it.
Reviewed By: jberdine
Differential Revision: D21332073
fbshipit-source-id: 184c8e0a9
Summary:
The idea was to keep track of why we know certain facts but actually
these traces are never read. Other arithmetic facts (BoItv and the path
condition) don't have histories so remove them from concrete intervals
too.
Reviewed By: dulmarod
Differential Revision: D21303353
fbshipit-source-id: eecf07b05
Summary:
We were invalidating "*(vec.__infer_backing_array)" instead of the
address of the field itself.
Reviewed By: ezgicicek
Differential Revision: D21280357
fbshipit-source-id: 48b984800
Summary: `CFBridgingRelease` and `__bridge_transfer` which I'll model later, transfer the memory model from manual memory ref count to ARC (automatic ref count), so to avoid false positives this needs to be modelled. We can simply remove the Allocated attribute from the state, which means we won't try to track that memory anymore.
Reviewed By: skcho
Differential Revision: D21088218
fbshipit-source-id: 3520a0d59
Summary:
Computing sledge's equality relation and normalising terms is costly. We
can avoid doing that most of the time by keeping the sledge path
condition lazily evaluated and only forcing it down to a value at two
critical points in the analysis:
1. Summary creation, to avoid storing unsatisfiable pre/posts that will have
to be needlessly executed by callers. This also saves us from having
to serialise the closures involved in the uncomputed form of lazy
values inside the pulse summaries.
2. Before reporting errors we check in the state is in fact satisfiable.
If not we just prune it away at that point.
This yields ~4x speedup on some targets.
Reviewed By: ezgicicek
Differential Revision: D21129759
fbshipit-source-id: a75fdd3bc
Summary: Modeling vector iterator with two internal fields: an internal array and an internal pointer. The internal array field points to the internal array field of a vector; the internal pointer field represents the current element of the array. For now `operator++` creates a fresh element inside the array.
Reviewed By: ezgicicek
Differential Revision: D21043304
fbshipit-source-id: db3be49ce
Summary:
Instead of having to remember to update both the inferbo and the concrete
intervals domains of pulse, hide these details under a unified API. This
should help the transition to adding a third(!) numerical domain later
on (pudge!).
Reviewed By: ezgicicek
Differential Revision: D21022920
fbshipit-source-id: 783157464
Summary:
As soon as pulse detects an error, it completely stops the analysis and loses the state where the error occurred. This makes it difficult to debug and understand the state the program failed. Moreover, other analyses that might build on pulse (e.g. impurity), cannot access the error state.
This diff aims to restore and display the state at the time of the error in `PulseExecutionState` along with the diagnostic by extending it as follows:
```
type exec_state =
| represents the state at the program point that caused an error *)
```
As a result, since we don't immediately stop the analysis as soon as we find an error, we detect both errors in conditional branches simultaneously (see test result changes for examples).
NOTE: We need to extend `PulseOperations.access_result` to keep track of the failed state as follows:
```
type 'a access_result = ('a, Diagnostic.t * t [denoting the exit state] ) result
```
Reviewed By: jvillard
Differential Revision: D20918920
fbshipit-source-id: 432ac68d6
Summary:
This diff lifts the `PulseAbductiveDomain.t` in `PulseExecutionState` by tracking whether the program continues the analysis normally or exits unusually (e.g. by calling `exit` or `throw`):
```
type exec_state =
| ContinueProgram of PulseAbductiveDomain.t (** represents the state at the program point *)
| ExitProgram of PulseAbductiveDomain.t
(** represents the state originating at exit/divergence. *)
```
Now, Pulse's actual domain is tracked by `PulseExecutionState` and as soon as we try to analyze an instruction at `ExitProgram`, we simply return its state.
The aim is to recover the state at the time of the exit, rather than simply ignoring them (i.e. returning empty disjuncts). This allows us to get rid of some FNs that we were not able to detect before. Moreover, it also allows the impurity analysis to be more precise since we will know how the state changed up to exit.
TODO:
- Impurity analysis needs to be improved to consider functions that simply exit as impure.
- The next goal is to handle error state similarly so that when pulse finds an error, we recover the state at the error location (and potentially continue to analyze?).
Disclaimer: currently, we handle throw statements like exit (as was the case before). However, this is not correct. Ideally, control flow from throw nodes follows catch nodes rather than exiting the program entirely.
Reviewed By: jvillard
Differential Revision: D20791747
fbshipit-source-id: df9e5445a
Summary:
This models all the Create and Copy functions from CoreGraphics, examples in the tests.
These functions all allocate memory that needs to be manually released.
The modelling of the release functions will happen in a following diff. Until then, we have some false positives in the tests.
This check is currently in biabduction, and we aim to move it to Pulse.
Reviewed By: jvillard
Differential Revision: D20626395
fbshipit-source-id: b39eae2d9
Summary:
First version of a new memory leak check based on Pulse. The idea is to examine unreachable cells in the heap and check that the "Allocated" attribute is available but the "Invalid CFree" isn't. This is done when we remove variables from the state.
Currently it only works for malloc, we can extend it to other allocation functions later.
Reviewed By: jvillard
Differential Revision: D20444097
fbshipit-source-id: 33b6b25a2
Summary:
Adding a model for malloc: we add an attribute "Allocated". This can be used for implementing memory leaks: whenever the variables get out of scope, we can check that if the variable has an attribute Allocated, it also has an attribute Invalid CFree.
Possibly we will need more details in the Allocated attribute, to know if it's malloc, or other allocation function, but we can add that later when we know how it should look like.
Reviewed By: jvillard
Differential Revision: D20364541
fbshipit-source-id: 5e667a8c3
Summary:
This diff enables parsing and auto-formatting documentation
comments (aka docstrings).
I have looked at this entire diff and manually made some changes to
improve the formatting. In some cases it looked like it would take too
much time, or benefit from someone more familiar with the code doing
it, and I instead disabled auto-formatting docstrings in those files.
Also, there are some source files where the docstrings are invalid,
and some where the structure detected by the parser appears not to
match what was intended. Auto-formatting has been disabled for these
files.
Reviewed By: ezgicicek
Differential Revision: D18755888
fbshipit-source-id: 68d72465d
Summary:
This gets rid of false positives when something invalid (eg null) is
passed by reference to an initialisation function. Havoc'ing what the
contents of the pointer to results in being optimistic about said
contents in the future.
Also surprisingly gets rid of some FNs (which means it can also
introduce FPs) in the `std::atomic` tests because a path condition
becomes feasible with havoc'ing.
There's a slight refinement possible where we don't havoc pointers to
const but that's more involved and left as future work.
Reviewed By: skcho
Differential Revision: D18726203
fbshipit-source-id: 264b5daeb
Summary:
Turns out code uses atomics in important places, modelling it removes
FPs.
The tests are copied from biabduction and adapted and extended a bit. I
didn't implement compare_exchange primitives for now (plus, giving them
a sequential semantics like in biabduction is probably a bit cheeky).
Reviewed By: skcho
Differential Revision: D18708576
fbshipit-source-id: a3581b8a4
Summary:
When reporting null dereference it is useful to know where the null came
from.
Reviewed By: skcho
Differential Revision: D18206459
fbshipit-source-id: 0c8e6781b
Summary:
The business of translating `Top/True/False` to `true/false` can be
hidden more.
Reviewed By: skcho
Differential Revision: D18115228
fbshipit-source-id: 071fcbddf
Summary:
Another poorman's library, this time about Pulse Domains. Also renames
`PulseDomain` to `PulseBaseDomain`.
Reviewed By: ezgicicek
Differential Revision: D17955287
fbshipit-source-id: 9c947cf98
Summary:
The name had rotten: it should be `AddrHistPair`. There is little value
of exposing the type of the pair `AbstractValue.t * ValueHistory.t`,
just inline its definition everywhere.
Reviewed By: ezgicicek
Differential Revision: D17955283
fbshipit-source-id: d145251e0
Summary:
See explanations in D17955104.
This renames `AbstractAddress` to `AbstractValue` since they are not
necessarily addresses.
Reviewed By: ezgicicek
Differential Revision: D17955290
fbshipit-source-id: 8bb4c61f2
Summary:
bigmacro_bender
There are 3 ways pulse tracks history. This is at least one too many. So
far, we have:
1. "histories": a humble list of "events" like "assigned here", "returned from call", ...
2. "interproc actions": a structured nesting of calls with a final "action", eg "f calls g calls h which does blah"
3. "traces", which combine one history with one interproc action
This diff gets rid of interproc actions and makes histories include
"nested" callee histories too. This allows pulse to track and display
how a value got assigned across function calls.
Traces are now more powerful and interleave histories and interproc
actions. This allows pulse to track how a value is fed into an action,
for instance performed in callee, which itself creates some more
(potentially now interprocedural) history before going to the next step
of the action (either another call or the action itself).
This gives much better traces, and some examples are added to showcase
this.
There are a lot of changes when applying summaries to keep track of
histories more accurately than was done before, but also a few
simplifications that give additional evidence that this is the right
concept.
Reviewed By: skcho
Differential Revision: D17908942
fbshipit-source-id: 3b62eaf78
Summary:
- add the variable being declared so we can report it back in the trace in addition to its location
- distinguish between local vars and formals
Reviewed By: skcho
Differential Revision: D17930348
fbshipit-source-id: a5b863e64
Summary:
When we make the decision to go into a branch "v = N" where some
abstract value is compared to a constant, remember the corresponding
equality. This allows to prune simple infeasible paths
intra-procedurally.
Further work is needed to make this useful interprocedurally, for
instance either or both of these ideas could be explored:
- abduce v=N in the precondition and do not apply summaries when the
equalities in the pre are not satisfied
- prune post-conditions that lead to unsat states where a value has to
be equal to several different constants
Reviewed By: skcho
Differential Revision: D17906166
fbshipit-source-id: 5cc84abc2
Summary:
When we know "x = 3" and we have a condition "x != 3" we know we can
prune the corresponding path.
Reviewed By: skcho
Differential Revision: D17665472
fbshipit-source-id: 988958ea6
Summary:
Pulse didn't treat local variables going out of scope as invalidating the corresponding address in memory. This diff fixes that by
- marking all local variables that exits the scope with the attribute `AddressOfStackVariable`
- before we write the summary for the proc, we make sure to invalidate all such addresses local to the procedure as `Invalid.` If such an address is read, then we would raise a use-after-lifetime issue.
Reviewed By: jvillard
Differential Revision: D16458355
fbshipit-source-id: 3686524cb
Summary: We know how to do interprocedural calls so let's use that!
Reviewed By: mbouaziz
Differential Revision: D16008164
fbshipit-source-id: 4c34bf704
Summary:
`function::operator=` is called whenever we assign a literal lambda to a
variable, so it's pretty useful to be able to report anything on
lambdas.
Reviewed By: mbouaziz
Differential Revision: D16008163
fbshipit-source-id: a9d07668d
Summary:
[apologies for the unreviewable diff...]
Get rid of HIL expressions in pulse. This finishes the HIL -> SIL
migration. The first step made pulse start from SIL instructions but
would translate most accesses to HIL to re-use most of the existing
pulse code. This diff gets rid of the intermediate translation of SIL
expressions to HIL expressions.
Big changes:
1. `PulseOperations` mostly rewritten, driven by using `Exp.t` instead of `HilExp.AccessExpression.t` for everything.
2. Stop trying to reverse-engineer what addresses mean in terms of
access paths from program variables. Rely on the trace pointing at
the right places in the code to be enough. This is because it wasn't
that useful (and could even be misleading when wrong) but could be
prohibitively expensive in degenerate cases (eg nodes with tens of
thousands of successive array accesses...)
3. `PulseAbductiveDomain.apply_post` now returns the computed return
value instead of recording it itself.
4. Change of vocabulary: `materialize` -> `eval`, `crumb` -> `event`
5. Function calls arguments are now evaluated prior to doing anything
else, which saves everything else from having to (remember to) do
that. In particular, this changes how models look quite a bit.
Reviewed By: mbouaziz
Differential Revision: D15986373
fbshipit-source-id: 1d79935de
Summary:
Just moving code around.
This is needed later to make some types in `PulseTrace` depend on
a new that I'll have to define in `PulseDomain`.
Also, this gives better names all around I think
Reviewed By: mbouaziz
Differential Revision: D15881281
fbshipit-source-id: e86c1472e
Summary:
Just moving code around.
This is needed later to make some types in `PulseInvalidation` depend on
a new type that I'll have to define in `PulseDomain`.
Reviewed By: mbouaziz
Differential Revision: D15824962
fbshipit-source-id: 86cba2bfb
Summary:
In preparation for the next diff that re-uses `PulseTrace.t` for a type
that combines breadcrumbs + action.
No change intended.
Reviewed By: mbouaziz, jberdine
Differential Revision: D15354437
fbshipit-source-id: cbb8757b4
Summary:
Feedback from peterogithub:
- mention which access path is being invalidated and accessed in the message
- mention the line at which it was invalidated (the line at which it's accessed is already the line at which we report)
- traces for stack variable/C++ temporary address escapes
- delete double implementation of the same functionality in
`PulseTrace`: `location_of_action_start` is the same as
`outer_location_of_action`...
Reviewed By: jberdine
Differential Revision: D14800294
fbshipit-source-id: 3d9ab9b3d
Summary:
We see the magic function `__variable_initialization` at the point where
the variable is declared, eg `int x = foo()`. It's safe to reset `&x` at
that point. This circumvents an issue that pops up in some rare cases
where the ternary conditional operator `?:` and variable initialization
conspire to produce weird frontend results.
Some test becomes a FN again, but I think it was being reported for the
wrong reasons; will investigate more later.
Reviewed By: ngorogiannis
Differential Revision: D14747980
fbshipit-source-id: e75d6e30f
Summary:
For each operation on the domain, try to record what it requires of the
precondition of the function. This is akin to what happens in the
biabduction backend, hence the terminology used.
Reviewed By: jberdine
Differential Revision: D14387148
fbshipit-source-id: a61fe30c8
Summary: It's all grown up now and taking quite some space in src/checkers/.
Reviewed By: skcho
Differential Revision: D14568273
fbshipit-source-id: b843c031e