Summary:
Take another page from the Incorrectness Logic book and refrain from reporting issues on paths unless we know for sure that this path will be taken.
Previously, we would report on paths that are merely *not impossible*. This goes very far in the other direction, so it's possible we'll want to go back to some sort of middle ground. Or maybe not. See the changes in the tests to get a sense of what we're missing.
Reviewed By: ezgicicek
Differential Revision: D24014719
fbshipit-source-id: d451faf02
Summary:
This started as an attempt to understand how to modify the frontend to
inject destructors for C++ temporaries (see next diffs).
This diff rewrites the existing logic for computing the list of
variables that should be destroyed at the end of each statement, either
because it's the end of their syntactic scope or because control flow
branches outside of their syntactic scope.
The frontend translates a function from the last instructions to the
first, but scope computation needs to be done in the other direction, so
it's done in a separate pass *before* the main translation happens. That
first pass creates a map from statements in the AST to the list of
variables that should be destroyed at the end of these statements. This
is still the case now.
Before, that map would be computed in a bit of a weird way: scopes are
naturally a stack but instead of that the structure maintained was a
flat list + a counter to know where the current scope ended in that
list.
In this diff, redo the computation maintaining a stack of scopes
instead, which is a bit cleaner. Also treat more instructions as
introducing a new scope, eg if, for, ...
Reviewed By: mbouaziz
Differential Revision: D15674208
fbshipit-source-id: c92429e82
Summary:
Some code calls `this->~Obj()` then proceeds to use fields in the current
object, which previously we would report as invalid uses. Assume people know
what they are doing and ignore destructor calls to `this`.
Reviewed By: mbouaziz
Differential Revision: D13401145
fbshipit-source-id: f6b0fb6ec
Summary:
When initialising a variable via semi-exotic means, the frontend loses
the information that the variable was initialised. For instance, it
translates:
```
struct Foo { int i; };
...
Foo s = {42};
```
as:
```
s.i := 42
```
This can be confusing for backends that need to know that `s` actually
got initialised, eg pulse.
The solution implemented here is to insert of dummy call to
`__variable_initiazition`:
```
__variable_initialization(&s);
s.i := 42;
```
Then checkers can recognise that this builtin function does what its
name says.
Reviewed By: mbouaziz
Differential Revision: D12887122
fbshipit-source-id: 6e7214438
Summary:
Now that arrays are dealt with separately (see previous diff), we can
turn the join back into an over-approximation as far as invalid
locations are concerned.
Reviewed By: skcho
Differential Revision: D12881989
fbshipit-source-id: fd85e49c0
Summary:
Getting this right will be long and complex so for now the easiest is to
underreport and only consider as invalid the addresses we know to be invalid on
both sides of a join. In fact the condition for an address to be invalid after
a join is more complex than this: it is invalid only if *all* the addresses in
its equivalence class as discovered by the join are invalid.
Reviewed By: skcho
Differential Revision: D12823925
fbshipit-source-id: 2ca109356
Summary: Similarly as for destructors, we provide an address of an object as a first parameter to constructors. When constructor is called we want to create a fresh location for a new object.
Reviewed By: jvillard
Differential Revision: D10868433
fbshipit-source-id: b60f32953
Summary: We provide an address of an object as a parameter to destructor. When destructor is called the object itself is invalidated, but not the address.
Reviewed By: jvillard
Differential Revision: D12824032
fbshipit-source-id: 516eebcf8
Summary:
The time has come to keep track of which tests pass and which are FP/FN
for pulse.
Reviewed By: mbouaziz
Differential Revision: D10854064
fbshipit-source-id: 60938e48f