Summary:
Previously, we considered a function which modifies its parameters to be impure even though it might not be modifying the underlying value. This resulted in FPs like the following program in Java:
```
void fresh_pure(int[] a) {
a = new int[1];
}
```
Similarly, in C++, we considered the following program as impure because it was writing to `s`:
```
Simple* reassign_pure(Simple* s) {
s = new Simple{2};
return s;
}
```
This diff fixes that issue by starting the check for address equivalnce in pre-post not directly from the addresses of the stack variables, but from the addresses pointed to by these stack variables. That means, we only consider things to be impure if the actual values pointed by the parameters change.
Reviewed By: skcho
Differential Revision: D18113846
fbshipit-source-id: 3d7c712f3
Summary:
Let's add basic Java support to impurity checker. Since impurity checker relies on pulse, we need to add Java with Pulse callback as well. Pulse doesn't officially support Java yet, but we can enable it for impurity checker for now.
Many Java primitives/operations are not yet modeled (such as creation of new objects, support for collections etc.). Still, it is good to run impurity checker on the existing tests of the purity checker. Also, it is nice to see that we can identify most of the impure functions correctly in the purity dir. There are a lot of FNs though.
Reviewed By: skcho
Differential Revision: D17906237
fbshipit-source-id: 15308d285