Summary: Guava uses assertions to ensure a future can be gotten without blocking (this means that if the future is not done, the app will crash). This diff teaches the starvation analyser about a number of such assertions, by treating them as assumes (since we don't care about exceptions).
Reviewed By: jvillard
Differential Revision: D18893427
fbshipit-source-id: 4d26a202b
Summary: A future is guaranteed not to block if `isDone()` has returned true first. Add logic for supporting that by remembering the objects that we have called `isDone` on and by making `assume` do the right thing with that knowledge. All this is achieved with the attribute domain.
Reviewed By: ezgicicek
Differential Revision: D18833901
fbshipit-source-id: 7f4ea0cd1
Summary:
Also add logic for recognising excessive timeouts. Refactor the code
around timeouts a little.
Reviewed By: artempyanykh
Differential Revision: D18807836
fbshipit-source-id: df5a1b566
Summary:
`Object.wait()` must be called on a locked monitor and it releases the
lock immediately, as far as other threads are concerned
(it also magically re-takes the lock when the monitor is `notified`).
Starvation can only occur if the UI thread is waiting
a lock that is distinct to that being waited on.
The check present was over-approximate in that it was checking that there exists a lock held by the UI thread and the thread issuing the `wait`, but did not make sure that lock was *not* the one waited on.
Amusingly, the e2e test was correct, but the reporting code wasn't.
Reviewed By: dulmarod
Differential Revision: D18782919
fbshipit-source-id: b3b98239e
Summary:
First step towards a global analysis. A new command line flag activates the step in `Driver`.
The whole-program analysis is a simple, quadratic (inefficient-as-yet), iteration over all domain elements. However, it is restricted to those elements that are explicitly scheduled to run.
Reviewed By: skcho
Differential Revision: D17787441
fbshipit-source-id: 9fecd766c
Summary:
In some apps executors are obtained by calling standard framework methods (and not by using DI with annotations).
To treat this style, we need to
- Detect calls that return such executors (`do_executor_effect`) and tag the return result with an `Attribute` indicating that it is now an executor, plus what thread it uses.
- Use that information when calling `execute`, to resolve the executor, if any, and its thread (in `do_work_scheduling` via `AttributeDomain.get_executor_constraint`).
- All this requires a new domain component, mapping variables to attributes. This extends the component previously used for remembering whether a variable is the result of a check on whether we run on the UI thread.
At the same time, I un-nested some functions from the transfer function for readability.
Reviewed By: skcho
Differential Revision: D18476122
fbshipit-source-id: bc39b5c2f
Summary: Capture locations where work is scheduled to run in parallel (here, just Executors). Also add a test file with cases the upcoming whole-program analysis for starvation should catch.
Reviewed By: dulmarod
Differential Revision: D18346880
fbshipit-source-id: 57411b052
Summary:
Add precision to analysis by elaborating the thread-status domain. This is done by having unknown (bottom), UI, BG or Any (both/top) elements in the lattice. This way, when we branch on thread-identity (if I am on UI thread do this, otherwise do that), we know that in one branch we are on UI thread and on the other we are *not* on the UI thread (BG thread), where previously the other branch would just go to top.
With this knowledge we can throw away pairs that come from callees which run on a thread that is impossible, given the current caller thread identity. This can happen when annotations are used incorrectly, and since this is the purview of annot-reachability, we just drop those pairs entirely.
Reviewed By: skcho
Differential Revision: D18202175
fbshipit-source-id: be604054e
Summary:
Steal a page from RacerD (and improve interface of) on using certain calls to assert
execution on a particular thread. Reduces FPs and FNs too.
Reviewed By: dulmarod
Differential Revision: D18199843
fbshipit-source-id: 5bdff0dfe
Summary: It is now possible to push the thread status into each critical pair. This leads to higher precision, because when code branches on whether it is on the UI thread, the final abstract state of the procedure will be `AnyThread`, but pairs created in the UI thread branch should know that their status is `UIThread`, not `AnyThread`.
Reviewed By: jvillard
Differential Revision: D18114273
fbshipit-source-id: cbb99b46f
Summary:
Domain for thread-type. The main goals are
- Track code paths that are explicitly on UI thread (via annotations, or assertions).
- Maintain UI-thread-ness through the call stack (if a callee is on UI thread then the
trace any call site must be on the UI thread too).
- If we are not on the UI thread we assume we are on a background thread.
- Traces with "UI-thread" status cannot interleave but all other combinations can.
- We do not track other annotations (eg WorkerThread or AnyThread) as they can be
erroneously applied -- other checkers should catch those errors (annotation reachability).
- Top is AnyThread, and is used as the initial state for analysis.
Interestingly, by choosing the right strategy for choosing initial state and applying callee summaries gets rid of some false negatives in the tests even though we have not introduced any path sensitivity yet.
Reviewed By: jvillard
Differential Revision: D17929390
fbshipit-source-id: d72871034
Summary: As per title. These test pass already because the previous thread domain was sufficient to express them. This won't necessarily be true when the whole-program analysis version comes around, because we may decide to not report on the `Threaded` elements (see domain).
Reviewed By: dulmarod
Differential Revision: D17930653
fbshipit-source-id: 2174f6b22
Summary:
Eventually thread status will be stored inside every critical pair so as to allow path sensitivity. That means that the status can no longer be a whole trace, as this will quickly become intractable, because each domain element would have to maintain its own trace as well as its own thread-status trace.
This is not great, as we lose information here, but I don't see any other way around it that is not super complicated/costly (sharing will be limited when moving from callee to caller).
Other diffs up the stack will clean up infrastructure no longer used meaningfully (ie models and domains).
Reviewed By: mityal
Differential Revision: D17908908
fbshipit-source-id: 3bf353e33
Summary:
Starvation is currently path insensitive. Two special cases of sensitivity cover a large range of useful cases:
- sensitivity on whether the current thread is a UI/background thread;
- sensitivity on whether a lock can be acquired (without blocking) or not.
We add a few tests capturing some of the false positives and negatives of the current analysis.
Reviewed By: mityal
Differential Revision: D17907492
fbshipit-source-id: fbce896ac
Summary:
The old domain keeps two sets:
- `events` are things (including lock acquisitions) which eventually happen during the execution of a procedure.
- `order` are pairs of `(lock, event)` such that there is a trace through the procedure which at some point acquires `lock` and before releasing it performs `event`.
A deadlock would be reported if for two procedures, `(lock1,lock2)` is in `order` of procedure 1 and `(lock2,lock1)` is in `order` of procedure 2. This condition/domain allowed for the false positive fixed in the tests, as well as was unwieldy, because it required translating between the two sets.
The new domain has only one set of "critical pairs" `(locks, event)` such that there is a trace where `event` occurs, and *right before it occurs* the locks held are exactly `locks` (no over/under approximation). This allows keeping all information in one set, simplifies the procedure call handling and eliminates the known false positive.
Reviewed By: mityal
Differential Revision: D17686944
fbshipit-source-id: 3c68bb957
Summary: Holding a master lock and then acquiring two other locks inside can generate a false positive as shown.
Reviewed By: mityal
Differential Revision: D17710076
fbshipit-source-id: 5bc910ba2
Summary:
Previously deduplication was always on which is not great for testing.
Also split tests so that we can still test deduplication separately.
Reviewed By: mityal
Differential Revision: D17686877
fbshipit-source-id: 280d91473
Summary:
Ideally the analyser should equate locks `this.x.f` and `a.x.f` in different methods if they can alias.
The heuristic removed here was rarely used and is in the way of a re-write of the analysis.
It was also badly implemented, as this should ideally be the comparison relation of `Lock`.
Reviewed By: mityal
Differential Revision: D17602827
fbshipit-source-id: 4f4576c1a
Summary:
Make distinct reports on strict mode violations.
For now, restrict to direct violations (UI threads calls transitively a violating method).
Will assess impact and enable indirect reports later (via locks).
Reviewed By: mbouaziz
Differential Revision: D10126780
fbshipit-source-id: 9c75930bc
Summary:
Goal of the stack: deprecate the `--analyzer` option in favour of turning
individual features on and off. This option is a mess: some of the options are
now subcommands (compile, capture), others are aliases (infer and checkers),
and they can all be replicated using some straightforward combination of other
options.
This diff: stop using `--analyzer` in tests. It's mostly `checkers` everywhere,
which is already the default. `linters` becomes `--no-capture --linters-only`.
`infer` is supposed to be `checkers` already. `crashcontext` is
`--crashcontext-only`.
Reviewed By: mbouaziz
Differential Revision: D9942689
fbshipit-source-id: 048281761
Summary: Sometimes it's very confusing to see why infer believes a method is running on the UI thread. Make a trace out of all the relevant info.
Reviewed By: mbouaziz
Differential Revision: D9781212
fbshipit-source-id: 6d018e400
Summary: The `procedure` field in the final report should use the non-ambiguous fully qualified name containing the Java package declaration and the list of parameter types.
Reviewed By: mbouaziz
Differential Revision: D9237522
fbshipit-source-id: e9b0ff664
Summary: Treat calls to Thread.sleep as blocking, even when the timeouts are less than the ANR limit.
Reviewed By: da319
Differential Revision: D9027950
fbshipit-source-id: 001409896
Summary:
Guava subclasses Future in ways that make .get() calls safe from the UI thread.
Treat such methods as skip.
Reviewed By: jeremydubreil
Differential Revision: D9013475
fbshipit-source-id: 38373aa5f
Summary:
Currently, some blocking calls are turning up too many false positives. Adjust severities by fix rate/preexisting numbers.
Also, restrict some calls to exact class, as opposed to superclasses.
Reviewed By: mbouaziz
Differential Revision: D8850599
fbshipit-source-id: 47543d04a
Summary: Trying to convert a large int literal to an OCaml int raises an exception. The use case here actually needed a float anyway, so add an API for that.
Reviewed By: jeremydubreil
Differential Revision: D8550410
fbshipit-source-id: 382495b
Summary:
We need to report on non-private methods (the opposite even leads to FPs sometimes on deadlocks). To do this, the domain needs to change so that the interpretation of an order pair `a,b` is no longer "lock `a` is taken in the *current method* and held until lock `b` is taken". Instead the meaning is now "lock `a` is taken in some method *of the same class with the current method* and is held until `b` is taken".
These changes are quite drastic because the previous implementation optimised extensively around the previous use case.
Reviewed By: mbouaziz
Differential Revision: D8395351
fbshipit-source-id: a2bd22b
Summary:
The deadlock reports (the actual string) were too low level, in order to avoid bug hash clashes. Now that we deduplicate this is less of an issue, so it's an opportunity to improve readability.
```
Potential deadlock.
Trace 1 (starts at `void Interproc.interproc1Bad(InterprocA)`) first locks `this` in class `Interproc*` (line 9 in `void Interproc.interproc1Bad(InterprocA)`) and then locks `b` in class `InterprocA*` (line 14 in `void Interproc.interproc2Bad(InterprocA)`).
Trace 2 (starts at `void InterprocA.interproc1Bad(Interproc)`), first locks `this` in class `InterprocA*` (line 37 in `void InterprocA.interproc1Bad(Interproc)`) and then locks `d` in class `Interproc*` (line 42 in `void InterprocA.interproc2Bad(Interproc)`).
```
Reviewed By: mbouaziz
Differential Revision: D8394978
fbshipit-source-id: 671ccb0
Summary:
The deadlock reports (the actual string) were too low level, in order to avoid bug hash clashes. Now that we deduplicate this is less of an issue, so it's an opportunity to improve readability.
```
Potential deadlock.
Trace 1 (starts at `void Interproc.interproc1Bad(InterprocA)`) first locks `this` in class `Interproc*` (line 9 in `void Interproc.interproc1Bad(InterprocA)`) and then locks `b` in class `InterprocA*` (line 14 in `void Interproc.interproc2Bad(InterprocA)`).
Trace 2 (starts at `void InterprocA.interproc1Bad(Interproc)`), first locks `this` in class `InterprocA*` (line 37 in `void InterprocA.interproc1Bad(Interproc)`) and then locks `d` in class `Interproc*` (line 42 in `void InterprocA.interproc2Bad(Interproc)`).
```
Reviewed By: mbouaziz
Differential Revision: D8379328
fbshipit-source-id: bc33983
Summary: Deadlocks can be very noisy, so dedup reports on same line by showing only the one with the shortest trace and a count of the suppressed ones.
Reviewed By: mbouaziz
Differential Revision: D8351148
fbshipit-source-id: 8913db2
Summary: Introduce an annotation that forces the summary of a method to be free of blocking events, without suppressing other reports.
Reviewed By: jeremydubreil
Differential Revision: D8276787
fbshipit-source-id: be9eed8