Summary:
Remove Clang and Java submodules of Typ.Fieldname. They are unnecessary and they reflect a fake dichotomy: there is only one fieldname type. To distinguish between fields of Java classes and other C constructs, there is a helper function provided, but the idea is simple: obtain the class type the field belongs to, and check if it's a Java class.
This diff still preserves behaviour, but removes as many functions as possible from the interface, to leave a small surface.
Reviewed By: mityal
Differential Revision: D18962423
fbshipit-source-id: ffe6933ee
Summary:
After passing a `PRUNE` instruction we can refine the current inferbo
intervals for the values involved.
Reviewed By: ezgicicek
Differential Revision: D18889103
fbshipit-source-id: b521046aa
Summary:
Finally use information from the inferbo intervals in pulse's domain to
make decisions about whether conditionals are feasible or not.
Reviewed By: skcho
Differential Revision: D18811193
fbshipit-source-id: d80a28657
Summary:
Refine the type of inferbo intervals attributes to "pure" (non-bottom)
ones. This is because were we to get a Bottom value from inferbo we
should stop the abstract execution instead of recording it in the state.
Reviewed By: ezgicicek
Differential Revision: D18811165
fbshipit-source-id: fff8664b7
Summary:
Similarly to binops, let inferbo evaluate unary operations and record
the results.
Reviewed By: ezgicicek
Differential Revision: D18811146
fbshipit-source-id: 8f9e16bbd
Summary:
This gets rid of false positives when something invalid (eg null) is
passed by reference to an initialisation function. Havoc'ing what the
contents of the pointer to results in being optimistic about said
contents in the future.
Also surprisingly gets rid of some FNs (which means it can also
introduce FPs) in the `std::atomic` tests because a path condition
becomes feasible with havoc'ing.
There's a slight refinement possible where we don't havoc pointers to
const but that's more involved and left as future work.
Reviewed By: skcho
Differential Revision: D18726203
fbshipit-source-id: 264b5daeb
Summary:
Turns out code uses atomics in important places, modelling it removes
FPs.
The tests are copied from biabduction and adapted and extended a bit. I
didn't implement compare_exchange primitives for now (plus, giving them
a sequential semantics like in biabduction is probably a bit cheeky).
Reviewed By: skcho
Differential Revision: D18708576
fbshipit-source-id: a3581b8a4
Summary: This extends semantics of binary operator for BoItv. If there is no known interval value for a pulse value, it returns a symbolic value of the pulse value.
Reviewed By: jvillard
Differential Revision: D18726768
fbshipit-source-id: ed8ecf78b
Summary:
This diff adds inferbo's interval values to pulse's attributes. The added values will be used to
filter out infeasible passes in the following diffs.
Reviewed By: jvillard
Differential Revision: D18726667
fbshipit-source-id: c1125ac6e
Summary:
Note: Disabled by default.
Having some support for values, we can report when a null or constant
value is being dereferenced. The particularity here is that we don't
report when 0 is a possible value for the address, or even if we know
that the value of the address can only be 0 in that branch! Instead, we
allow ourselves to report only when we the address has been *set* to
NULL (or any constant).
This is in line with how pulse deals with other issues: only report when
1. we see an address become invalid, and
2. we see the same address be used later on
Reviewed By: skcho
Differential Revision: D17665468
fbshipit-source-id: f1ccf94cf
Summary:
When reporting null dereference it is useful to know where the null came
from.
Reviewed By: skcho
Differential Revision: D18206459
fbshipit-source-id: 0c8e6781b
Summary:
This simplifies the code overall. It also makes accessing the action of
a "trace" (which is now stored alongside it instead of deep inside it)
constant time instead of linear in the number of nested calls.
Reviewed By: skcho
Differential Revision: D18206460
fbshipit-source-id: 9546ff36f
Summary:
This adds a more interesting value domain to pulse: concrete intervals.
There are still two main limitations:
1. arithmetic operations are all over-approximated: any assignment involving arithmetic operations is replaced by non-determinism
2. abstract values that are discovered to be equal are not merged into one
Reviewed By: skcho
Differential Revision: D18058972
fbshipit-source-id: 0492a590f
Summary:
This does several things because it was hard to split it more:
1. Split most of the arithmetic reasoning to PulseArithmetic.ml. This
doesn't need to be reviewed thoroughly because an upcoming diff
changes the domain from just `EqualTo of Const.t` to an interval domain!
2. When going through a prune node intra-procedurally, abduce arithmetic
facts to the pre (instead of just propagating them). This is the "assume
as assert" trick used by biabduction 1.0 too and allows to propagate
arithmetic constraints to callers.
3. Use 2 when applying summaries by pruning specs whose preconditions
have un-satisfiable arithmetic constraints.
This changes one of the tests! Pulse now does a bit more work to find
the false positive, as can be seen in the longer trace.
Reviewed By: skcho
Differential Revision: D18117160
fbshipit-source-id: af3b2c8c0
Summary:
If a precondition cannot be applied, it means that this program path
somehow doesn't make sense for the caller and so should be pruned. Right
now we just treat this as skipping over the call instead.
This will become more important when specs start mentioning arithmetic
facts that must be satisfied at the call site. As it is we will only
stop if we discover aliasing in the pre not present at the call site or
vice versa.
Reviewed By: dulmarod
Differential Revision: D18115230
fbshipit-source-id: 4f1c7a583
Summary:
The business of translating `Top/True/False` to `true/false` can be
hidden more.
Reviewed By: skcho
Differential Revision: D18115228
fbshipit-source-id: 071fcbddf
Summary:
Warning 33 (unused open) is enabled but the module open is not really
unused, it's just also opened at the top of the file...
Reviewed By: skcho
Differential Revision: D18114385
fbshipit-source-id: 2a8f9512a
Summary:
Another poorman's library, this time about Pulse Domains. Also renames
`PulseDomain` to `PulseBaseDomain`.
Reviewed By: ezgicicek
Differential Revision: D17955287
fbshipit-source-id: 9c947cf98
Summary:
See explanations in D17955104.
This renames `AbstractAddress` to `AbstractValue` since they are not
necessarily addresses.
Reviewed By: ezgicicek
Differential Revision: D17955290
fbshipit-source-id: 8bb4c61f2
Summary:
See explanations in D17955104. I put Attributes inside PulseAttribute
instead of creating a new file to avoid exposing more internals about
ranks.
Reviewed By: ezgicicek
Differential Revision: D17955284
fbshipit-source-id: a8719a58f
Summary:
bigmacro_bender
There are 3 ways pulse tracks history. This is at least one too many. So
far, we have:
1. "histories": a humble list of "events" like "assigned here", "returned from call", ...
2. "interproc actions": a structured nesting of calls with a final "action", eg "f calls g calls h which does blah"
3. "traces", which combine one history with one interproc action
This diff gets rid of interproc actions and makes histories include
"nested" callee histories too. This allows pulse to track and display
how a value got assigned across function calls.
Traces are now more powerful and interleave histories and interproc
actions. This allows pulse to track how a value is fed into an action,
for instance performed in callee, which itself creates some more
(potentially now interprocedural) history before going to the next step
of the action (either another call or the action itself).
This gives much better traces, and some examples are added to showcase
this.
There are a lot of changes when applying summaries to keep track of
histories more accurately than was done before, but also a few
simplifications that give additional evidence that this is the right
concept.
Reviewed By: skcho
Differential Revision: D17908942
fbshipit-source-id: 3b62eaf78
Summary:
I dunno, seemed wrong before. About to introduce another attribute with
similar arguments so making them consistent in advance.
Reviewed By: skcho
Differential Revision: D17930349
fbshipit-source-id: 944b58bac
Summary:
- add the variable being declared so we can report it back in the trace in addition to its location
- distinguish between local vars and formals
Reviewed By: skcho
Differential Revision: D17930348
fbshipit-source-id: a5b863e64
Summary:
When we make the decision to go into a branch "v = N" where some
abstract value is compared to a constant, remember the corresponding
equality. This allows to prune simple infeasible paths
intra-procedurally.
Further work is needed to make this useful interprocedurally, for
instance either or both of these ideas could be explored:
- abduce v=N in the precondition and do not apply summaries when the
equalities in the pre are not satisfied
- prune post-conditions that lead to unsat states where a value has to
be equal to several different constants
Reviewed By: skcho
Differential Revision: D17906166
fbshipit-source-id: 5cc84abc2
Summary:
When we know "x = 3" and we have a condition "x != 3" we know we can
prune the corresponding path.
Reviewed By: skcho
Differential Revision: D17665472
fbshipit-source-id: 988958ea6
Summary:
First step in having a value domain: record concrete values. We record
them as equalities to abstract values using a new attribute `Constant`.
In a way, attributes are already our "pure" part in the "formulas" that
are pulse abstract domains, so this is reminiscent of existing
separation logic implementations. Trying to add values directly in the
"heap" part proved very cumbersome whereas this approach is very simple,
allowing us to ignore values most of the time except when we actually
care.
Reviewed By: skcho
Differential Revision: D17665473
fbshipit-source-id: b8033ad9c
Summary:
Turns out `Memory.add_attributes` was only used to add singletons so
deleted that in the process.
Reviewed By: skcho
Differential Revision: D17627725
fbshipit-source-id: 0abe3889d
Summary:
This was bogus: when evaluating `e[e']` we were checking that `e'` is a
valid pointer.
Reviewed By: ezgicicek
Differential Revision: D17627727
fbshipit-source-id: 536384e95
Summary:
Before this diff we would record when some values came from the "address
of" logical variables. This makes no sense and also was incorrectly
marking these addresses as "written to" when they appeared in the post
of a procedure, because their attributes weren't empty (they had the
"address of stack variable" attribute).
Reviewed By: ngorogiannis
Differential Revision: D17131210
fbshipit-source-id: 6cc3c465a
Summary:
Pulse didn't treat local variables going out of scope as invalidating the corresponding address in memory. This diff fixes that by
- marking all local variables that exits the scope with the attribute `AddressOfStackVariable`
- before we write the summary for the proc, we make sure to invalidate all such addresses local to the procedure as `Invalid.` If such an address is read, then we would raise a use-after-lifetime issue.
Reviewed By: jvillard
Differential Revision: D16458355
fbshipit-source-id: 3686524cb
Summary:
Be more flexible in what type of function calls are allowed in `ViaCall ...` actions to be able to include models.
Also get rid of `here here` in traces /o\
As a side-effect, get more precise (=qualified) procedure names in
traces (but not in messages so as not to be too verbose).
Reviewed By: mbouaziz, ngorogiannis
Differential Revision: D16121092
fbshipit-source-id: fb51b02f8
Summary:
Cluster checkers call `SummaryPayload.read` but set the `caller_summary` to correspond to the same summary as gives the `callee_pname`
This change introduces a new method `read_toplevel_procedure` that does not require a `caller_summary`, to be used by the cluster checkers
Reviewed By: ngorogiannis
Differential Revision: D16131660
fbshipit-source-id: 12caa1000
Summary:
Prevent false positives about variables captured by value gone out of
scope.
Reviewed By: ezgicicek
Differential Revision: D16008165
fbshipit-source-id: d70e47db4
Summary: We know how to do interprocedural calls so let's use that!
Reviewed By: mbouaziz
Differential Revision: D16008164
fbshipit-source-id: 4c34bf704
Summary:
`function::operator=` is called whenever we assign a literal lambda to a
variable, so it's pretty useful to be able to report anything on
lambdas.
Reviewed By: mbouaziz
Differential Revision: D16008163
fbshipit-source-id: a9d07668d
Summary:
Fixes a false positive where the address of a C++ temporary is bound to
a static const reference variable then returned. The fix doesn't try to
establish that the variable is a const reference so could lead to false
negatives but that can be addressed later.
Reviewed By: ezgicicek
Differential Revision: D16004538
fbshipit-source-id: e403dbefe
Summary:
[apologies for the unreviewable diff...]
Get rid of HIL expressions in pulse. This finishes the HIL -> SIL
migration. The first step made pulse start from SIL instructions but
would translate most accesses to HIL to re-use most of the existing
pulse code. This diff gets rid of the intermediate translation of SIL
expressions to HIL expressions.
Big changes:
1. `PulseOperations` mostly rewritten, driven by using `Exp.t` instead of `HilExp.AccessExpression.t` for everything.
2. Stop trying to reverse-engineer what addresses mean in terms of
access paths from program variables. Rely on the trace pointing at
the right places in the code to be enough. This is because it wasn't
that useful (and could even be misleading when wrong) but could be
prohibitively expensive in degenerate cases (eg nodes with tens of
thousands of successive array accesses...)
3. `PulseAbductiveDomain.apply_post` now returns the computed return
value instead of recording it itself.
4. Change of vocabulary: `materialize` -> `eval`, `crumb` -> `event`
5. Function calls arguments are now evaluated prior to doing anything
else, which saves everything else from having to (remember to) do
that. In particular, this changes how models look quite a bit.
Reviewed By: mbouaziz
Differential Revision: D15986373
fbshipit-source-id: 1d79935de
Summary:
Now that HIL doesn't help us anymore we need to reconstruct its mapping
"SIL logical var -> program access path". We already have everything we
need in pulse: it suffices to walk the current memory graph starting
from program variables until we find the value of the temporary we are
interested in.
This diff also builds some type machinery to make sure all accesses are
explained.
Reviewed By: mbouaziz
Differential Revision: D15824959
fbshipit-source-id: 722c81b39