Summary: After a redeclaration of a global constant, it is not parsed as ICE(integral constant expression), which results in FN.
Reviewed By: ezgicicek
Differential Revision: D14299288
fbshipit-source-id: 394afd595
Summary:
It materializes symbolic values of function parameters on-demand. The on-demand materialization is triggered when finding a value from an abstract memory and joining/widening abstract memories.
Depends on D13294630
Main idea:
* Symbolic values are on-demand-ly generated by a symbol path and its type
* In order to avoid infinite generation of symbolic values, symbol paths are canonicalized by structure types and field names (which means they are abstracted to the same value). For example, in a linked list, a symbolic value `x->next->next` is canonicalized to `x->next` when the structures (`*x` and `*x->next`) have the same structure type and the same field name (`next`).
Changes from the previous code:
* `Symbol.t` does not include `id` and `pname` for distinguishing symbols. Now, all symbols are compared by `path:SymbolPath.partial` and `bound_end`.
* `SymbolTable` is no longer used, which was used for generating symbolic values with new `id`s.
Reviewed By: mbouaziz
Differential Revision: D13294635
fbshipit-source-id: fa422f084
Summary:
At function calls, it copies callee's values that are reachable from parameters.
Depends on D13231291
Reviewed By: mbouaziz
Differential Revision: D13231711
fbshipit-source-id: 1e8aed1c4
Summary: It instantiates not only symbols for bound but also symbols for locations at function calls.
Reviewed By: mbouaziz
Differential Revision: D13231291
fbshipit-source-id: ce23a943b
Summary: There is a bug on the instantiation of function parameters.
Reviewed By: mbouaziz
Differential Revision: D12973691
fbshipit-source-id: ca7fbc4e6
Summary:
It avoids raising an exception when unexpected arguments are given to
placement new. We will revert this after fixing the frontend to parse
user defined `new` correctly in the future.
Reviewed By: mbouaziz
Differential Revision: D10378136
fbshipit-source-id: d494f781b
Summary:
It unsets `var_exp_typ` of `trans_state` during the translations of
placement parameters, so they are translated independently against the
target variable and class of the `new` function.
Reviewed By: mbouaziz, jvillard
Differential Revision: D10161419
fbshipit-source-id: 7f588a91c
Summary: It enables placement_new to get three parameters, which happens when placement_new is overloaded (e.g. Boost).
Reviewed By: mbouaziz
Differential Revision: D10100324
fbshipit-source-id: 0ecb0a404
Summary:
Change the license of the source code from BSD + PATENTS to MIT.
Change `checkCopyright` to reflect the new license and learn some new file
types.
Generated with:
```
git grep BSD | xargs -n 1 ./scripts/checkCopyright -i
```
Reviewed By: jeremydubreil, mbouaziz, jberdine
Differential Revision: D8071249
fbshipit-source-id: 97ca23a
Summary:
At function calls, it copies a subset of heap memory that is newly
allocated by callees and is reachable from the return value.
Reviewed By: mbouaziz
Differential Revision: D7081425
fbshipit-source-id: 1ce777a
Summary:
The `may_last_field` boolean value in the `decl_sym_val` function presents that the location *may* (not *must*) be a flexible array member.
By the modular analysis nature, it is impossible to determine whether a given argument is a flexible array member or not---because of lack of calling context. For example, there are two function calls of `foo` below: (2) passes a flexible array member as an argument and (1) passes a non-flexible array, however it is hard to notice when analyzing the `foo` function.
```
struct T {
int c[1];
};
struct S {
struct T a;
struct T b;
};
void foo(struct T x) { ... }
void goo () {
struct S* x = (struct S*)malloc(sizeof(struct S) + 10 * sizeof(int));
foo(&(x->a)); // (1)
foo(&(x->b)); // (2)
}
```
We assume that any given arguments may stem from the last field of struct, i.e., flexible array member. (This is why `decl_sym_val` is called with `may_last_field:true` at the first time.) With some tests, we noticed that the assumption does not harm the analysis precision, because whether regarding a parameter as a flexible array member or not is about using a symbolic array size instead of a constant array size written in the type during the analysis of callee. Therefore still it can raise correct alarms if the actual parameter is given in its caller.
Reviewed By: mbouaziz
Differential Revision: D7081295
fbshipit-source-id: a4d57a0
Summary:
It supports flexible array member using the following heuristic:
- a memory for a class is allocated by `malloc(sizeof(C) + n * sizeof(T))` format
- the last field of the class is an array
- the static size of the last field is one, i.e., `T field_name[1]`
When allocating and initializing members of classes, it sets the size of flexible array to `n+1` if the above conditions are met.
Reviewed By: mbouaziz
Differential Revision: D7056291
fbshipit-source-id: 31c5868
Summary:
The semantics of "placement new" is defined simply as an assignment.
For example, `C* x = new (y) C();` is analyzed as if `C* x = y;`.
Reviewed By: mbouaziz
Differential Revision: D7054007
fbshipit-source-id: 1c6754f