Summary:
This diff propagates LatestPrune on function calls.
Depends on D14321605
Reviewed By: mbouaziz
Differential Revision: D14321618
fbshipit-source-id: cb2e1b547
Summary:
Given a pointer-typed parameter, Inferbo assumes that it is an array
block. However, when a pointer is given as an actual parameter, it
failed the substitution of the array block value of the parameter, thus
which made some return values to bottom unexpectedly.
This diff revises the substitution of array block, so it can
substitute array block values with actual pointers correctly when it
is possible.
Reviewed By: mbouaziz
Differential Revision: D14663475
fbshipit-source-id: 0477de1ba
Summary:
This diff accumulates LatestPrune in sequential prunings. It should be sound since Inferbo invalidates some data of LatestPrune if they are updated.
Depends on D14321534
Reviewed By: mbouaziz
Differential Revision: D14321575
fbshipit-source-id: 233dbae32
Summary:
Some of these tests were wrong, eg `~lambda()` calls `lambda()` then...
takes the bitwise complement or something? The intent was to call the
destructor.
Add interprocedural tests for later.
Reviewed By: jberdine
Differential Revision: D14324762
fbshipit-source-id: 40d2c32f5
Summary:
Previously we would say that `lhs <= rhs` (or `lhs |- rhs`) when a
mapping existed between the abstract addresses of `lhs` and `rhs` such
that `mapping(lhs)` was a supergraph of `rhs`. In particular,
we had that `x |-> x' * x' |-> x'' |- x |-> x'`. This is not entirely
great, in particular once we get pairs of state representing footprint +
current state. I'm not sure I have an extremely compelling argument why
though, except that it's not the usual way we do implication in SL, but
there wasn't a compelling argument for the previous state of affairs
either.
This changes `|-` to be true only when `mapping(lhs) = rhs` (modulo only
considering the addresses reachable from the stack variables).
Reviewed By: jberdine
Differential Revision: D14568272
fbshipit-source-id: 1bb83950e
Summary: This helps convergence when `<=` is based on physical equality for example, and widening is implemented as `widen ~prev ~next = join prev next`.
Reviewed By: skcho
Differential Revision: D14568270
fbshipit-source-id: ded5ed296
Summary:
Re-declarations of global variables sometimes hide constant
initializations in the original declaration, which caused FN before.
In this diff, it translates global variables to point to original
declarations, rather than following re-declarations, if possible.
Reviewed By: mbouaziz, jvillard
Differential Revision: D14596301
fbshipit-source-id: 55c3b5f95
Summary: In SIL, sometimes a return value is assigned to `__return_param`.
Reviewed By: ezgicicek, mbouaziz
Differential Revision: D14538590
fbshipit-source-id: dfbb74dc2
Summary: This diff substitutes symbolic values for unknown functions in proof obligations to top. The goal of the diff is to avoid generating too many number of proof obligations that cannot be concretized.
Reviewed By: ezgicicek
Differential Revision: D14537542
fbshipit-source-id: 7f8f3bb4b
Summary:
TOPL properties are essentially automata, which specify a bad pattern.
This commit is just a parser for them.
Reviewed By: jvillard
Differential Revision: D14477671
fbshipit-source-id: c38a8ef37
Summary:
Add support for GuardedBy: we deviate from the spec as follows:
- No warnings issued for any access within a private method, unless that method is called from a public method and the lock isn't held when the access occurs.
- Warnings are suppressed with the general RacerD mechanism, ie `ThreadSafe(enableChecks=false)`
- GuardedBy warnings override thread-safety violation warnings on the same access, because GuardedBy has a clearer and simpler contract.
Also, some simplifications, cleanups and perf improvements (eg avoid unreportable procs at the top level as opposed to on each of their accesses).
Reviewed By: jeremydubreil
Differential Revision: D14506161
fbshipit-source-id: b7d794051
Summary:
While adding a footprint frame during rearrangement, the footprint
variables should be fresh with respect to the current state too, not
only with respect to he footprint, because the frame is added to the
state.
Reviewed By: jberdine
Differential Revision: D14401026
fbshipit-source-id: 20ea4485a
Summary:
Context: "quandary" traces optimise for space by only storing a call site (plus analysis element) in a summary, as opposed to a list of call sites plus the element (i.e., a trace). When forming a report, the trace is expanded to a full one by reading the summary of the called function, and then matching up the current element with one from the summary, iterating until the trace cannot be expanded any more. In the best case, this can give a quadratic saving, as a real trace gets longer the higher one goes in the call stack, and therefore the total cost of saving that trace in each summary is quadratic in the length of the trace. Quandary traces give a linear cost.
HOWEVER, these have been a source of many subtle bugs.
1. The trace expansion strategy is very arbitrary and cannot distinguish between expanded traces that are invalid (i.e., end with a call and not an originating point, such as a field access in RacerD). Plus the strategy does not explore all expansions, just the left-most one, meaning the left most may be invalid in the above sense, but another (not left-most) isn't even though it's not discovered by the expansion. This is fixable with major surgery.
2. All real traces that lead to the same endpoint are conflated -- this is to save space because there may be exponentially many such traces. That's OK, but these traces may have different locking contexts -- one may take the lock along the way, and another may not. The expansion cannot make sure that if we are reporting a trace we have recorded as taking the lock, will actually do so. This has resulted in very confusing race reports that are superficially false positives (even though they point to the existence of a real race).
3. Expansion completely breaks down in the java/buck integration when the trace goes through f -> g -> h and f,g,h are all in distinct buck targets F,G,H and F does not depend directly on H. In that case, the summary of h is simply not available when reporting/expanding in f, so the expanded trace comes out as truncated and invalid. These are filtered out, but the filtering is buggy and kills real races too.
This diff completely replaces quandary traces in RacerD with plain explicit traces.
- This will incur the quadratic space/time cost previously saved. See test plan: there is indeed a 30% increase in summary size, but there is no slowdown. In fact, on openssl there is a 10-20% perf increase.
- For each endpoint, up to a single trace is used, as before, so no exponential explosion. However, because there is no such thing as expansion, we cannot get it wrong and change the locking context of a trace.
- This diff is emulating the previous reporting format as much as possible to allow good signal from the CI. Further diffs up this stack will remove quandary-trace specific things, and simplify further the code.
- 2 is not fully addressed -- it will require pushing the `AccessSnapshot` structure inside `TraceElem`. Further diffs.
Reviewed By: jberdine
Differential Revision: D14405600
fbshipit-source-id: d239117aa
Summary:
To meet the pure parts of formulas, the process was to (a) call Rename.extend
with variables occuring in similar places and (b) extract substitutions out of
those. Two matching primed vars would both be replaced by some fresh primed var.
However, equivalence classes of primed variables would *not* be replaced by
one fresh (primed) variable. Now, that should work.
Reviewed By: mbouaziz
Differential Revision: D14150192
fbshipit-source-id: 90ca9216c
Summary:
This will be used in the future to determine what to do with destructors
in pulse.
Reviewed By: mbouaziz
Differential Revision: D14324759
fbshipit-source-id: bc3c34471
Summary:
This seems generally useful. Force people to do it in the future even if
they want to avoid having to update the frontend tests.
Reviewed By: mbouaziz
Differential Revision: D14324758
fbshipit-source-id: cdef3f72a
Summary:
When joining two lists of disjuncts we try to ensure there isn't a state
that under-approximates another already in the list. This helps reduce
the number of disjuncts that are generated by conditionals and loops.
Before we would always just add more disjuncts unless they were
physically equal but now we do a subgraph computation to assess
under-approximation.
We only do this half-heartedly for now however, only taking into
consideration the "new" disjuncts vs the "old" ones. It probably makes
sense to do a full quadratic search to minimise the number of disjuncts
from time to time but this isn't done here.
Reviewed By: mbouaziz
Differential Revision: D14258482
fbshipit-source-id: c2dad4889