Summary: Structs captured both by reference or by value should have reference in their type. Struct captured by value should first call copy constructor. In this diff we fix the type of the captured variable to include reference. Copy constructor injection is left for the future.
Reviewed By: jvillard
Differential Revision: D23688713
fbshipit-source-id: d13748b5d
Summary: Variables captured without initialization do not have correct type inside lambda's body. This diff sets the correct type of captured reference variables inside procdesc and makes sure the translation of captured variables is correct. The translation of lambda's body will then take into account the type of captured var from procdesc.
Reviewed By: jvillard
Differential Revision: D23678371
fbshipit-source-id: ed16dc978
Summary: Add missing reference to the type of variable captured by reference without initialization.
Reviewed By: jvillard
Differential Revision: D23567685
fbshipit-source-id: b4e2ac0b6
Summary:
We were missing assignment to captured variables with initializers.
Consider the following example:
```
S* update_inside_lambda_capture_and_init(S* s) {
S* object = nullptr;
auto f = [& o = object](S* s) { o = s; };
f(s);
return object;
}
```
which was translated to
```
VARIABLE_DECLARED(o:S*&);
*&o:S*&=&object
*&f =(_fun...lambda..._operator(),([by ref]&o &o:S*&))
```
However, we want to capture `o` (which is an address of `object`), rather `&o` in closure.
After the diff
```
VARIABLE_DECLARED(o:S*&);
*&o:S*&=&object
n$7=*&o:S*&
*&f =(_fun...lambda..._operator(),([by ref]n$7 &o:S*&))
```
Reviewed By: jvillard
Differential Revision: D23567346
fbshipit-source-id: 20f77acc2
Summary:
This can be useful to make pulse forget about tricky parts of the code.
Treat "skipped" procedures as unknown so heuristics for mutating the
return value and parameters passed by reference are applied.
Reviewed By: ezgicicek
Differential Revision: D23729410
fbshipit-source-id: d7a4924a8
Summary: Added a model for copy constructor for `std::function`. In most cases, the SIL instruction `std::function::function(&dest, &src)` gives us pointers to `dest` and `src`, hence, we model the copy constructor as a shallow copy. However, in some cases, e.g. `std::function f = lambda_literal`, SIL instruction contains the closure itself `std::function::function(&dest, (operator(), captured_vars)`, hence, we need to make sure we copy the right value.
Reviewed By: ezgicicek
Differential Revision: D23396568
fbshipit-source-id: 0acb8f6bc
Summary: There was a mismatch between formals and actuals in `std::function::operator()` because we were not passing the first argument corresponding to the closure.
Reviewed By: ezgicicek
Differential Revision: D23372104
fbshipit-source-id: d0f9b27d6
Summary: When we evaluate lambdas in pulse, we create a closure object with `fake` fields to store captured variables. However, during the function call we were not linking the captured values from the closure object. We address this missing part here.
Reviewed By: jvillard
Differential Revision: D23316750
fbshipit-source-id: 14751aa58
Summary:
`delete` works exactly like `free` so merge both models together. Also
move the `free(0)` test to nullptr.cpp as it seems more appropriate.
Reviewed By: da319
Differential Revision: D23241297
fbshipit-source-id: 20a32ac54
Summary: Before we were modelling `vector.end()` as returning a fresh pointer every time is was called. It is common to check if an iterator is not the `end()` iterator and proceed to dereference the iterator in that case. In such code pattern `vector.end()` is called twice and returns different fresh values which causes false positives. To fix this, we add a special internal field `__infer_model_backing_array_pointer_to_last_element` to a vector to denote its end. Now, every time we call `vector.end()` we return the value of this field. We introduce a new attribute `EndOfCollection` to mark `end` iterator as the existing `EndIterator` invalidation is not suitable when we need to read the same value multiple times.
Reviewed By: jvillard
Differential Revision: D23101185
fbshipit-source-id: fa8a33b58
Summary:
This time it's personal.
Roll out pulse's own arithmetic domain to be fast and be able to add
precision as needed. Formulas are precise representations of the path
condition to allow for good inter-procedural precision. Reasoning on
these is somewhat ad-hoc (except for equalities, but even these aren't
quite properly saturated in general), so expect lots of holes.
Skipping dead code in the interest of readability as this (at least
temporarily) doesn't use pudge anymore. This may make a come-back as
pudge has/will have better precision: the proposed implementation of
`PulseFormula` is very cheap so can be used any time we could want to
prune paths (see following commits), but this comes at the price of some
precision. Calling into pudge at reporting time still sounds like a good
idea to reduce false positives due to infeasible paths.
#skipdeadcode
Reviewed By: skcho
Differential Revision: D22576004
fbshipit-source-id: c91793256
Summary: We model internal builtin `__new` function to return a non-null value. This fixes nullptr_dereference false positives where we explicitly check the result of a function call for nullptr when the function returns a newly created object.
Reviewed By: jvillard
Differential Revision: D22772217
fbshipit-source-id: 37d209697
Summary:
Add a test to the repo to try and detect perf regressions in pulse.
Currently analyzed in ~0.1s. With `--pudge`, takes ~10s.
Sledge does eager normalization and canonicalization when incorporating new facts into formula contexts and the algorithm is polynomial in the number of equalities. This example generates one equality per location in the array => boom. This bypasses the recency model of arrays because the formula needs to be constructed before it can be simplified to get rid of dead variables.
The new arithmetic is not as complete as sledge's algorithm but linear in time. We could use it to simplify the formula *before* passing it to sledge. In fact, that was the original motivation.
Reviewed By: skcho
Differential Revision: D22574366
fbshipit-source-id: e9044ae09
Summary:
When applying function summaries, we are careful not to violate the
summary's assumptions about non-aliasing. For example, the summary we
generate for `foo(x,y) { *x = *y; }` will have `x` and `y` be allocated
to two different `AbstractValue.t` in the heap, representing
disjointness.
However, the current logic is too coarse and also rejects passing the
same pure value to functions that made no assumption about them being
equal or different, eg `goo(int x,int y) { int z = x + y; }`. This is
because the corresponding `AbstractValue.t` are different in the
callee's summary, but are represented by only one same value in callers
such as `goo(i,i)`.
This diff restricts the "don't violate aliasing" condition to only
consider heap-allocated values. This is consistent with separation logic
by the way: we use the implication `x|->- * y|->- |- x≠y`, which is
valid only when both `x` and `y` are both allocated in the heap as in
the left-hand-side of `|-`.
Reviewed By: skcho
Differential Revision: D22574297
fbshipit-source-id: 206a18499
Summary: To avoid NULLPTR_DEREFERENCE false positives we want to model some functions as returning non-null. A new flag --pulse-model-return-nonnull allows us to provide a list of such functions.
Reviewed By: ezgicicek
Differential Revision: D22431564
fbshipit-source-id: 9944c7382
Summary:
Keyword `thread_local` in cpp allows us to create a variable with thread storage duration, meaning that the object's lifetime begins when the thread begins and ends when the thread ends.
We get `NULLPTR_DEREFERENCE` false positive for `thread_local` variable since we reallocate it in the `VariableLifetimeBegins` metadata instruction and we do not see further updates to the variable. To solve the issue we special case `VariableLifetimeBegins` instruction for global variables.
Reviewed By: jvillard
Differential Revision: D22284135
fbshipit-source-id: 13c14ef90
Summary:
We need to check if `folly::Optional` is not `folly::none` if we want to retrieve the value, otherwise a runtime exception is thrown:
```
folly::Optional<int> foo{folly::none};
return foo.value(); // bad
```
```
folly::Optional<int> foo{folly::none};
if (foo) {
return foo.value(); // ok
}
```
This diff adds a new issue type that reports if we try to access `folly::Optional` value when it is known to be `folly::none`.
Reviewed By: ezgicicek
Differential Revision: D22053352
fbshipit-source-id: 32cb00a99
Summary: To avoid NULLPTR_DEREFERENCE false positives we want to treat some functions as `abort`. A new flag `--pulse-model-abort` allows us to provide a list of such functions.
Reviewed By: ezgicicek
Differential Revision: D21962555
fbshipit-source-id: d46b93c99
Summary: Assigning `nullptr` to `std::function` was causing `NULLPTR_DEREFERENCE` as our model was expecting to get an object in the right hand side of the assignment (`std::function::operator=`) and was dereferencing that object. Assigning `nullptr` to `std::function` removes callable object from it. We model this special case by creating a fresh value.
Reviewed By: skcho
Differential Revision: D21685318
fbshipit-source-id: 2d4af1933
Summary: Currently we get false positive if we apply `operator--` to the `end()` iterator. To solve this, we model iterator `operator--` not to raise an error for the `EndIterator` invalidation, but to create a fresh element in the underlying array.
Reviewed By: ezgicicek
Differential Revision: D21476353
fbshipit-source-id: 5c722372e
Summary:
It is undefined behavior to dereference end iterator.
To catch end iterator dereferencing issues we change iterator model: instead of having `internal pointer` storing the current index, we model it as a pointer to a current index. This allows us to model `end()` iterator as having an invalid pointer and there is no need to create an invalidated element in the vector itself.
Reviewed By: ezgicicek
Differential Revision: D21178441
fbshipit-source-id: fd6a94b0b
Summary:
List of things happening in this unreviewable diff:
- moved PulsePathCondition to PulseSledge
- renamed --pulse-path-conditions to --pudge
- PulsePathCondition now contains all the arithmetic of pulse
(inferbo+concrete intervals+pudge). In particular, moved arithmetic
attributes into PulsePathCondition.t. PulsePathCondition plays the
role of PulseArithmetic (combining all domains).
- added tests for a false positive involving free()
- PulseArithmetic is now just a thin wrapper around PulsePathCondition
to operate on states directly (instead of on path conditions).
- The rest is mostly moving code into PulsePathCondition (eg, from
PulseInterproc) and adjusting it.
Reviewed By: jberdine
Differential Revision: D21332073
fbshipit-source-id: 184c8e0a9
Summary:
We were invalidating "*(vec.__infer_backing_array)" instead of the
address of the field itself.
Reviewed By: ezgicicek
Differential Revision: D21280357
fbshipit-source-id: 48b984800
Summary:
The directory names had some interesting variety due to historical
reasons.
- {c,cpp,objc,objcpp}/errors/ date from the time when infer was only
biabduction
- java/infer/ dates from the time when we had an "--analyzer" option and
"infer" was one of them (sic), and eg another was "eradicate".
- c/biabduction/ dates from the time when the biabduction analysis was
being migrated to the "checkers" (AI) framework. For some reasons the
tests there are not a subset of c/infer/ but seem to be entirely new
tests.
The convention now dictates that we should name all of these
*/biabduction/. This diff moves the existing tests from c/biabduction/
into c/biabduction/misc/.
Reviewed By: mityal
Differential Revision: D21300147
fbshipit-source-id: 516d1cb15
Summary: Iterator invalidation traces were based on vector rather than iterator itself.
Reviewed By: ezgicicek
Differential Revision: D21202047
fbshipit-source-id: 62ce8a488
Summary:
We ignored allocator models for vectors, and were not able to initialize vectors properly. This diff fixes this issue.
It also adds a test which was a FN before.
Reviewed By: skcho, jvillard
Differential Revision: D21089492
fbshipit-source-id: 6906cd1d1
Summary:
Replace horrible hack with ok hack.
The main difficulty in implementing the disjunctive domain is to avoid
the quadratic time complexity of executing the same disjuncts over and
over again when going around loops:
First time around a loop, assuming for example a single disjunct `d`:
```
[d]
loop body
[d1' \/ d2']
```
Second time around the same loop: the new pre will be the join of the
posts of predecessor nodes, so `old_pre \/ post(loop,old_pre)`, i.e.
`d \/ d1' \/ d2'`. Now we need to execute `loop body` again
*without running the symbolic execution of `d` again* (and the time after
that we'll want to not execute `d`, `d1'`, or `d2'`).
Horrible hack (before): Disjuncts have a boolean "visited" attached
that does its best to keep track of whether a given disjunct is old or
new. When executing a single *instruction* look at the flag and skip the
state if it's old. Of course we have no way to know for sure so it turns
out it was often wrongly re-executing old disjuncts. This was also
producing the wrong results over even simple loops: only the last
iteration would make it outside the loop for some reason. Overall, the
semantics were pretty untractable and shady at best.
New hack (this diff): only run instructions of a given *node* on
disjuncts that are not physically equal to the "pre" ones already in the
invariant map for the current node.
This gives the correct result over simple loops and a nice performance
improvement in general (probably the old heuristic was hitting the
quadratic bad case more often).
Reviewed By: skcho
Differential Revision: D21154063
fbshipit-source-id: 5ee38c68c
Summary:
When encountering a constant, pulse creates an abstract value (a
variable) to represent it, and remembers that it's equal to it. The
problem is that pulse doesn't yet know how to deal with the fact that
some variables are going to be equal to each other.
This hacks around this issue in the case of constants, within the same
procedure, by remembering which constants have been assigned to which
place-holder variables, and serving those variables again when the same
constant is translated again.
Limitation: this doesn't work across procedure calls as the "constant
maps" are not saved in summaries.
Something to look out for: we don't want to make `if (p == NULL)` create
a path where `p` is invalid (we only make null invalid when we see an
assignment from 0, i.e. `p = NULL;`).
Reviewed By: ezgicicek
Differential Revision: D21089961
fbshipit-source-id: 5ebb85d0a
Summary: Modeling vector iterator with two internal fields: an internal array and an internal pointer. The internal array field points to the internal array field of a vector; the internal pointer field represents the current element of the array. For now `operator++` creates a fresh element inside the array.
Reviewed By: ezgicicek
Differential Revision: D21043304
fbshipit-source-id: db3be49ce
Summary:
Add a path condition to each symbolic state, represented in sledge's arithmetic domain. This gives a precise account of arithmetic constraints. In particular, it is relation and thus is more robust in the face of inter-procedural analysis.
This is gated behind a flag for now as there are performance issues with the new arithmetic.
Reviewed By: jberdine
Differential Revision: D20393947
fbshipit-source-id: b780de22a
Summary:
As soon as pulse detects an error, it completely stops the analysis and loses the state where the error occurred. This makes it difficult to debug and understand the state the program failed. Moreover, other analyses that might build on pulse (e.g. impurity), cannot access the error state.
This diff aims to restore and display the state at the time of the error in `PulseExecutionState` along with the diagnostic by extending it as follows:
```
type exec_state =
| represents the state at the program point that caused an error *)
```
As a result, since we don't immediately stop the analysis as soon as we find an error, we detect both errors in conditional branches simultaneously (see test result changes for examples).
NOTE: We need to extend `PulseOperations.access_result` to keep track of the failed state as follows:
```
type 'a access_result = ('a, Diagnostic.t * t [denoting the exit state] ) result
```
Reviewed By: jvillard
Differential Revision: D20918920
fbshipit-source-id: 432ac68d6
Summary:
This diff lifts the `PulseAbductiveDomain.t` in `PulseExecutionState` by tracking whether the program continues the analysis normally or exits unusually (e.g. by calling `exit` or `throw`):
```
type exec_state =
| ContinueProgram of PulseAbductiveDomain.t (** represents the state at the program point *)
| ExitProgram of PulseAbductiveDomain.t
(** represents the state originating at exit/divergence. *)
```
Now, Pulse's actual domain is tracked by `PulseExecutionState` and as soon as we try to analyze an instruction at `ExitProgram`, we simply return its state.
The aim is to recover the state at the time of the exit, rather than simply ignoring them (i.e. returning empty disjuncts). This allows us to get rid of some FNs that we were not able to detect before. Moreover, it also allows the impurity analysis to be more precise since we will know how the state changed up to exit.
TODO:
- Impurity analysis needs to be improved to consider functions that simply exit as impure.
- The next goal is to handle error state similarly so that when pulse finds an error, we recover the state at the error location (and potentially continue to analyze?).
Disclaimer: currently, we handle throw statements like exit (as was the case before). However, this is not correct. Ideally, control flow from throw nodes follows catch nodes rather than exiting the program entirely.
Reviewed By: jvillard
Differential Revision: D20791747
fbshipit-source-id: df9e5445a
Summary:
A plus is a plus, no need to give up when +/- is about pointers. This
gets rid of some false positives involving pointer arithmetic.
However, the problem remains if we make things a bit more
inter-procedural. This is documented in an added test.
Reviewed By: ezgicicek
Differential Revision: D18932877
fbshipit-source-id: 4ad1cfe72
Summary:
- Do most of the work of `solve_arithmetic_constraints` inside `subst_attribute` instead, since we need to re-use the latter function for post-conditions where the first function is not appropriate.
- When substituting arithmetic constraints, we refine arithmetic information (both concrete intervals and inferbo), which can lead to inconsistent states. Instead of recording the new arithmetic facts by returning a new current state, just act as a map on attributes. This is to enable doing the point above.
- All this lead to a somewhat messy refactoring...
- Rename `CannotApplyPre` to `Contradiction` since it's used for post-conditions as well now
Reviewed By: skcho
Differential Revision: D18889120
fbshipit-source-id: d81647143
Summary:
Pointers are hard... The previous test had no chance of doing
initialisation of the pointer by reference and was in fact a false
negative (and still is, fix incoming). Renamed functions to stress the
false negative and added a test that is really (potentially) doing
pointer initialisation by reference.
Reviewed By: skcho
Differential Revision: D18888008
fbshipit-source-id: 1e72408c7
Summary:
Finally use information from the inferbo intervals in pulse's domain to
make decisions about whether conditionals are feasible or not.
Reviewed By: skcho
Differential Revision: D18811193
fbshipit-source-id: d80a28657
Summary:
This gets rid of false positives when something invalid (eg null) is
passed by reference to an initialisation function. Havoc'ing what the
contents of the pointer to results in being optimistic about said
contents in the future.
Also surprisingly gets rid of some FNs (which means it can also
introduce FPs) in the `std::atomic` tests because a path condition
becomes feasible with havoc'ing.
There's a slight refinement possible where we don't havoc pointers to
const but that's more involved and left as future work.
Reviewed By: skcho
Differential Revision: D18726203
fbshipit-source-id: 264b5daeb
Summary:
It's a well-known fact that pulse should know too. To avoid splitting
the abstract state systematically, only act if we know the pointer is
exactly 0 to avoid reporting a nullptr dereference on `free(x)`.
Reviewed By: ezgicicek
Differential Revision: D18708575
fbshipit-source-id: 1cc3f6908
Summary:
Turns out code uses atomics in important places, modelling it removes
FPs.
The tests are copied from biabduction and adapted and extended a bit. I
didn't implement compare_exchange primitives for now (plus, giving them
a sequential semantics like in biabduction is probably a bit cheeky).
Reviewed By: skcho
Differential Revision: D18708576
fbshipit-source-id: a3581b8a4
Summary:
This diff adds inferbo's interval values to pulse's attributes. The added values will be used to
filter out infeasible passes in the following diffs.
Reviewed By: jvillard
Differential Revision: D18726667
fbshipit-source-id: c1125ac6e
Summary:
Note: Disabled by default.
Having some support for values, we can report when a null or constant
value is being dereferenced. The particularity here is that we don't
report when 0 is a possible value for the address, or even if we know
that the value of the address can only be 0 in that branch! Instead, we
allow ourselves to report only when we the address has been *set* to
NULL (or any constant).
This is in line with how pulse deals with other issues: only report when
1. we see an address become invalid, and
2. we see the same address be used later on
Reviewed By: skcho
Differential Revision: D17665468
fbshipit-source-id: f1ccf94cf
Summary:
This adds a more interesting value domain to pulse: concrete intervals.
There are still two main limitations:
1. arithmetic operations are all over-approximated: any assignment involving arithmetic operations is replaced by non-determinism
2. abstract values that are discovered to be equal are not merged into one
Reviewed By: skcho
Differential Revision: D18058972
fbshipit-source-id: 0492a590f
Summary:
This does several things because it was hard to split it more:
1. Split most of the arithmetic reasoning to PulseArithmetic.ml. This
doesn't need to be reviewed thoroughly because an upcoming diff
changes the domain from just `EqualTo of Const.t` to an interval domain!
2. When going through a prune node intra-procedurally, abduce arithmetic
facts to the pre (instead of just propagating them). This is the "assume
as assert" trick used by biabduction 1.0 too and allows to propagate
arithmetic constraints to callers.
3. Use 2 when applying summaries by pruning specs whose preconditions
have un-satisfiable arithmetic constraints.
This changes one of the tests! Pulse now does a bit more work to find
the false positive, as can be seen in the longer trace.
Reviewed By: skcho
Differential Revision: D18117160
fbshipit-source-id: af3b2c8c0