Summary:
It assigns symbolic values for global variables in the load commands. However, it does not instantiate the symbols for the global variables yet, which will be addressed in another diff.
Depends on D14208643
Reviewed By: ezgicicek
Differential Revision: D14257619
fbshipit-source-id: f9113c8a3
Summary:
The Eradicate backend is reporting nullable type errors, that are not always necessarily leading to null pointer exceptions.
For example, the analysis is designed to be consistent with the Java type system and report on the following code:
String foo(boolean test) {
Object object = test ? new Object() : null;
if (test) {
return object.toString(); // the analysis reports here
}
}
even though the code will not crash.
In order to make this aspect clear, this diff renames the warnings `Null Method Call` and `Null Field Access` into `Nullable Dereference`
Reviewed By: ngorogiannis
Differential Revision: D14001979
fbshipit-source-id: ff1285283
Summary:
This diff adds a constant to the set of widening thresholds if the
constant is compared to an abstract value in condition expressions.
Each abstract value has its own set of thresholds.
Reviewed By: mbouaziz
Differential Revision: D14147150
fbshipit-source-id: ca0db34d4
Summary: Record where each symbol in a polynomial is coming from: either a loop, function call or a modeled call.
Reviewed By: mbouaziz
Differential Revision: D14047420
fbshipit-source-id: 56d0bd926
Summary: In SIL, Java's array member is a pointer to an array, while C++'s is the array itself. This diff differentiate them in evaluating abstract locations.
Reviewed By: ezgicicek, mbouaziz
Differential Revision: D14021451
fbshipit-source-id: 00f14fe3b
Summary:
- There is no need to use AI to compute a dot product: let's just fold over all nodes, but still do it in order (using the WTO) to report at the right place
- The previous version was computing a dot product on nodes for each node, which was quadratic, the new version is linear
- Report only once, the first time the threshold is reached (if in a loop, report at the loop head)
Reviewed By: ddino
Differential Revision: D14028171
fbshipit-source-id: b4a840c6e
Summary:
Get rid of false positive as in the test by modelling `Double`. Longer term we
should probably prevent biabduction from blocking the angelic analysis on
`Nullable` fields but that seems harder.
Reviewed By: jeremydubreil
Differential Revision: D14005228
fbshipit-source-id: 59ef2ed66
Summary: The Makefile was missing that target and making `make test-replace` at the root of the repo fail.
Reviewed By: ngorogiannis
Differential Revision: D13990483
fbshipit-source-id: 805b5d2a9
Summary:
This will allow to get the numerical results for Cost, Hoisting, Purity without the Inferbo issues.
For now, I still forced Inferbo issues for Cost and Purity to avoid lots of changes in tests, that will go away soon.
Reviewed By: ezgicicek, skcho
Differential Revision: D13826741
fbshipit-source-id: 796d1a50d
Summary: Publish solutions to the lab, and a Docker file and image to get started more quickly with infer hacking.
Reviewed By: mbouaziz
Differential Revision: D13648847
fbshipit-source-id: daf48ad03
Summary: This diff unset powloc and arrayblk values of p when assume(p==Null).
Reviewed By: mbouaziz, jvillard
Differential Revision: D13415366
fbshipit-source-id: a491a957f
Summary:
For abstract values representing one concrete value, create only one symbol instead of two.
Still create two symbols (lb, ub) for abstract values representing multiple concrete values (like array cells).
As a consequence, comparisons of symbolic values are more precise (we can even prove equality). I expect to remove a bunch of FPs.
Another consequence is the disappearance of `.lb` and `.ub` in many reports.
Reviewed By: skcho
Differential Revision: D13072084
fbshipit-source-id: 9bc0b9881