(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (* Transformation from llvm to llair *) open HolKernel boolLib bossLib Parse; open arithmeticTheory pred_setTheory; open settingsTheory llvmTheory llairTheory; new_theory "llvm_to_llair"; numLib.prefer_num (); Definition the_def: (the None x = x) ∧ (the (Some x) _ = x) End Definition find_name_def: find_name used new suff = let n = new ++ (toString suff) in if n ∉ used ∨ ¬finite used then n else find_name used new (suff + 1n) Termination WF_REL_TAC `measure (λ(u,new,s). card { str | ?n. str = new++toString n ∧ str ∈ u ∧ s ≤ n })` >> rw [] >> qmatch_abbrev_tac `card s1 < card s2` >> `s2 ⊆ used` by rw [Abbr `s1`, Abbr `s2`, SUBSET_DEF] >> `s1 ⊆ s2` by (rw [Abbr `s1`, Abbr `s2`, SUBSET_DEF] >> qexists_tac `n` >> rw []) >> `s1 ≠ s2` by ( rw [Abbr `s1`, Abbr `s2`, EXTENSION] >> qexists_tac `new ++ toString suff` >> rw []) >> metis_tac [CARD_SUBSET, SUBSET_FINITE, SUBSET_EQ_CARD, LESS_OR_EQ] End Definition gen_name_def: gen_name used new = if new ∈ used then find_name used new 0 else new End Definition gen_names_def: (gen_names used [] = (used, [])) ∧ (gen_names used (n::ns) = let n = gen_name used n in let (used, names) = gen_names ({n} ∪ used) ns in (used, n::names)) End Definition translate_size_def: (translate_size llvm$W1 = 1) ∧ (translate_size W8 = 8) ∧ (translate_size W32 = 32) ∧ (translate_size W64 = 64) End (* TODO *) Definition translate_ty_def: translate_ty = ARB : ty -> typ End Definition translate_glob_var_def: translate_glob_var (Glob_var g) t = Var_name g (translate_ty t) End Definition translate_reg_def: translate_reg (Reg r) t = Var_name r (translate_ty t) End Definition translate_label_def: translate_label f (Lab l) = Lab_name f l End Definition translate_const_def: (translate_const (IntC s i) = Integer i (IntegerT (translate_size s))) ∧ (translate_const (StrC tcs) = Record (map (λ(ty, c). translate_const c) tcs)) ∧ (translate_const (ArrC tcs) = Record (map (λ(ty, c). translate_const c) tcs)) ∧ (* TODO *) (translate_const (GlobalC g) = Var (translate_glob_var g ARB)) ∧ (* TODO *) (translate_const (GepC _ _ _ _) = ARB) ∧ (translate_const UndefC = Nondet) Termination WF_REL_TAC `measure const_size` >> Induct_on `tcs` >> rw [] >> rw [const_size_def] >> first_x_assum drule >> decide_tac End Definition translate_arg_def: (translate_arg emap (Constant c) t = translate_const c) ∧ (translate_arg emap (Variable r) t = case flookup emap r of | None => Var (translate_reg r t) | Some e => e) End Definition translate_updatevalue_def: (translate_updatevalue a v [] = v) ∧ (translate_updatevalue a v (c::cs) = let c' = translate_const c in Update a c' (translate_updatevalue (Select a c') v cs)) End (* TODO *) Definition translate_instr_to_exp_def: (translate_instr_to_exp emap (llvm$Sub _ _ _ ty a1 a2) = llair$Sub (translate_ty ty) (translate_arg emap a1 ty) (translate_arg emap a2 ty)) ∧ (translate_instr_to_exp emap (Extractvalue _ (t, a) cs) = foldl (λe c. Select e (translate_const c)) (translate_arg emap a t) cs) ∧ (translate_instr_to_exp emap (Insertvalue _ (t1, a1) (t2, a2) cs) = translate_updatevalue (translate_arg emap a1 t1) (translate_arg emap a2 t2) cs) End (* This translation of insertvalue to update and select is quadratic in the * number of indices, but we haven't observed clang-generated code with multiple * indices. * * Insertvalue a v [c1; c2; c3] becomes * * Up a c1 (Up (Sel a c1) c2 (Up (Sel (Sel a c1) c2) c3 v)) * * We could store each of the selections and get a linear size list of * instructions instead of a single expression. * * Examples: * EVAL ``translate_instr_to_exp fempty (Extractvalue r (t,a) [c1; c2; c3; c4; c5])`` ⊢ translate_instr_to_exp fempty (Extractvalue r (t,a) [c1; c2; c3; c4; c5]) = Select (Select (Select (Select (Select (translate_arg fempty a) (translate_const c1)) (translate_const c2)) (translate_const c3)) (translate_const c4)) (translate_const c5): thm * * EVAL ``translate_instr_to_exp fempty (Insertvalue r (t,a) (t,v) [c1; c2; c3; c4; c5])`` ⊢ translate_instr_to_exp fempty (Insertvalue r (t,a) (t,v) [c1; c2; c3; c4; c5]) = Update (translate_arg fempty a) (translate_const c1) (Update (Select (translate_arg fempty a) (translate_const c1)) (translate_const c2) (Update (Select (Select (translate_arg fempty a) (translate_const c1)) (translate_const c2)) (translate_const c3) (Update (Select (Select (Select (translate_arg fempty a) (translate_const c1)) (translate_const c2)) (translate_const c3)) (translate_const c4) (Update (Select (Select (Select (Select (translate_arg fempty a) (translate_const c1)) (translate_const c2)) (translate_const c3)) (translate_const c4)) (translate_const c5) (translate_arg fempty v))))): thm * * *) (* TODO *) Definition translate_instr_to_inst_def: (translate_instr_to_inst emap (llvm$Store (t1, a1) (t2, a2)) = llair$Store (translate_arg emap a1 t1) (translate_arg emap a2 t2) (sizeof t2)) ∧ (translate_instr_to_inst emap (Load r t (t1, a1)) = Load (translate_reg r t1) (translate_arg emap a1 t1) (sizeof t)) End (* TODO *) Definition translate_instr_to_term_def: translate_instr_to_term f emap (Br a l1 l2) = Iswitch (translate_arg emap a (IntT W1)) [translate_label f l2; translate_label f l1] End Datatype: instr_class = | Exp reg ty | Non_exp | Term | Call End (* Convert index lists as for GEP into number lists, for the purpose of * calculating types. Everything goes to 0 but for positive integer constants, * because those things can't be used to index anything but arrays, and the type * for the array contents doesn't depend on the index's value. *) Definition idx_to_num_def: (idx_to_num (_, (Constant (IntC _ n))) = Num (ABS n)) ∧ (idx_to_num (_, _) = 0) End Definition cidx_to_num_def: (cidx_to_num (IntC _ n) = Num (ABS n)) ∧ (cidx_to_num _ = 0) End Definition classify_instr_def: (classify_instr (Call _ _ _ _) = Call) ∧ (classify_instr (Ret _) = Term) ∧ (classify_instr (Br _ _ _) = Term) ∧ (classify_instr (Invoke _ _ _ _ _ _) = Term) ∧ (classify_instr Unreachable = Term) ∧ (classify_instr (Load _ _ _) = Non_exp) ∧ (classify_instr (Store _ _) = Non_exp) ∧ (classify_instr (Cxa_throw _ _ _) = Non_exp) ∧ (classify_instr Cxa_end_catch = Non_exp) ∧ (classify_instr (Cxa_begin_catch _ _) = Non_exp) ∧ (classify_instr (Sub r _ _ t _ _) = Exp r t) ∧ (classify_instr (Extractvalue r (t, _) idx) = Exp r (THE (extract_type t (map cidx_to_num idx)))) ∧ (classify_instr (Insertvalue r (t, _) _ idx) = Exp r t) ∧ (classify_instr (Alloca r t _) = Exp r (PtrT t)) ∧ (classify_instr (Gep r t _ idx) = Exp r (PtrT (THE (extract_type t (map idx_to_num idx))))) ∧ (classify_instr (Ptrtoint r _ t) = Exp r t) ∧ (classify_instr (Inttoptr r _ t) = Exp r t) ∧ (classify_instr (Icmp r _ _ _ _) = Exp r (IntT W1)) ∧ (* TODO *) (classify_instr (Cxa_allocate_exn r _) = Exp r ARB) ∧ (classify_instr (Cxa_get_exception_ptr r _) = Exp r ARB) End (* Translate a list of instructions into an block. f is the name of the function * that the instructions are in, reg_to_keep is the set of variables that we * want to keep assignments to (e.g., because of sharing in the expression * structure. * emap is a mapping of registers to expressions that compute the * value that should have been in the expression. * * This tries to build large expressions, and omits intermediate assignments * wherever possible. * For example: * r2 = sub r0 r1 * r3 = sub r2 r1 * r4 = sub r3 r0 * * becomes * r4 = sub (sub (sub r0 r1) r1) r0 * * if r4 is the only register listed as needing to be kept. * *) Definition translate_instrs_def: (translate_instrs f emap reg_to_keep [] = (<| cmnd := []; term := Unreachable |>, emap)) ∧ (translate_instrs f emap reg_to_keep (i :: is) = case classify_instr i of | Exp r t => let x = translate_reg r t in let e = translate_instr_to_exp emap i in if r ∈ reg_to_keep then let (b, emap') = translate_instrs f (emap |+ (r, Var x)) reg_to_keep is in (b with cmnd := Move [(x, e)] :: b.cmnd, emap') else translate_instrs f (emap |+ (r, e)) reg_to_keep is | Non_exp => let (b, emap') = translate_instrs f emap reg_to_keep is in (b with cmnd := translate_instr_to_inst emap i :: b.cmnd, emap') | Term => (<| cmnd := []; term := translate_instr_to_term f emap i |>, emap) (* TODO *) | Call => ARB) End Definition dest_label_def: dest_label (Lab s) = s End Definition dest_phi_def: dest_phi (Phi r t largs) = (r, t, largs) End Definition translate_label_opt_def: (translate_label_opt f entry None = Lab_name f entry) ∧ (translate_label_opt f entry (Some l) = translate_label f l) End Definition translate_header_def: (translate_header f entry Entry = []) ∧ (translate_header f entry (Head phis _) = map (λ(r, t, largs). (translate_reg r t, map (λ(l, arg). (translate_label_opt f entry l, translate_arg fempty arg t)) largs)) (map dest_phi phis)) End Definition translate_block_def: translate_block f entry_n emap regs_to_keep (l, b) = let (b', emap') = translate_instrs f emap regs_to_keep b.body in ((Lab_name f (the (option_map dest_label l) entry_n), (translate_header f entry_n b.h, b')), emap') End (* Given a label and phi node, get the assignment for that incoming label. It's * convenient to return a list, but we expect there to be exactly 1 element. *) Definition build_move_for_lab_def: build_move_for_lab l (r, les) = let les = filter (λ(l', e). l = l') les in map (λ(l', e). (r,e)) les End (* Given a list of phis and a label, get the move corresponding to entering * the block targeted by l_to from block l_from *) Definition generate_move_block_def: generate_move_block phis l_from l_to = let t = Iswitch (Integer 0 (IntegerT 1)) [l_to] in case alookup phis l_to of | None => <| cmnd := [Move []]; term := t |> | Some (phis, _) => <| cmnd := [Move (flat (map (build_move_for_lab l_from) phis))]; term := t |> End Definition label_name_def: label_to_name (Lab_name _ l) = l End (* Given association list of labels and phi-block pairs, and a particular block, * build the new move blocks for its terminator *) Definition generate_move_blocks_def: generate_move_blocks f used_names bs (l_from, (_, body)) = case body.term of | Iswitch e ls => let (used_names, new_names) = gen_names used_names (map label_to_name ls) in let mb = map2 (λl_to new. (Lab_name f new, generate_move_block bs l_from l_to)) ls new_names in (used_names, (l_from, body with term := Iswitch e (map fst mb)) :: mb) End Definition generate_move_blocks_list_def: (generate_move_blocks_list f used_names bs [] = (used_names, [])) ∧ (generate_move_blocks_list f used_names bs (b::bs') = let (used_names, new_blocks) = generate_move_blocks f used_names bs b in let (used_names, new_blocks2) = generate_move_blocks_list f used_names bs bs' in (used_names, new_blocks :: new_blocks2)) End (* Given an association list of labels and phi-block pairs, remove the phi's, * by generating an extra block along each control flow edge that does the move * corresponding to the relevant phis. *) Definition remove_phis_def: remove_phis f used_names bs = flat (snd (generate_move_blocks_list f used_names bs bs)) End Definition translate_param_def: translate_param (t, r) = translate_reg r t End Definition translate_def_def: translate_def (Lab f) d = let used_names = ARB in let entry_name = gen_name used_names "entry" in (* TODO *) let regs_to_keep = UNIV in (* We thread a mapping from register names to expressions through. This * works assuming that the blocks are in a good ordering, which must exist * because the LLVM is in SSA form, and so each definition must dominate all * uses. * *) let (bs, emap) = foldl (λ(bs, emap) b. let (b', emap') = translate_block f entry_name emap regs_to_keep b in (b'::bs, emap')) ([], fempty) d.blocks in <| params := map translate_param d.params; (* TODO: calculate these from the produced llair, and not the llvm *) locals := ARB; entry := Lab_name f entry_name; cfg := remove_phis f used_names (reverse bs); freturn := ARB; fthrow := ARB |> End export_theory ();