(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Terms *) [@@@warning "+9"] type op1 = | Signed of {bits: int} | Unsigned of {bits: int} | Convert of {src: Typ.t; dst: Typ.t} | Splat | Select of int [@@deriving compare, equal, hash, sexp] type op2 = | Eq | Dq | Lt | Le | Ord | Uno | Div | Rem | And | Or | Xor | Shl | Lshr | Ashr | Memory | Update of int [@@deriving compare, equal, hash, sexp] type op3 = Conditional | Extract [@@deriving compare, equal, hash, sexp] type opN = Concat | Record [@@deriving compare, equal, hash, sexp] type recN = Record [@@deriving compare, equal, hash, sexp] module rec Qset : sig include Import.Qset.S with type elt := T.t val hash : t -> int val hash_fold_t : t Hash.folder val t_of_sexp : Sexp.t -> t end = struct include Import.Qset.Make (T) let hash_fold_t = hash_fold_t T.hash_fold_t let hash = Hash.of_fold hash_fold_t let t_of_sexp = t_of_sexp T.t_of_sexp end and T : sig type qset = Qset.t [@@deriving compare, equal, hash, sexp] type t = | Add of qset | Mul of qset | Var of {id: int; name: string} | Ap1 of op1 * t | Ap2 of op2 * t * t | Ap3 of op3 * t * t * t | ApN of opN * t iarray | RecN of recN * t iarray (** NOTE: cyclic *) | Label of {parent: string; name: string} | Nondet of {msg: string} | Float of {data: string} | Integer of {data: Z.t} [@@deriving compare, equal, hash, sexp] end = struct type qset = Qset.t [@@deriving compare, equal, hash, sexp] type t = | Add of qset | Mul of qset | Var of {id: int; name: string} | Ap1 of op1 * t | Ap2 of op2 * t * t | Ap3 of op3 * t * t * t | ApN of opN * t iarray | RecN of recN * t iarray (** NOTE: cyclic *) | Label of {parent: string; name: string} | Nondet of {msg: string} | Float of {data: string} | Integer of {data: Z.t} [@@deriving compare, equal, hash, sexp] (* Note: solve (and invariant) requires Qset.min_elt to return a non-coefficient, so Integer terms must compare higher than any valid monomial *) let compare x y = match (x, y) with | Var {id= i; name= _}, Var {id= j; name= _} when i > 0 && j > 0 -> Int.compare i j | _ -> compare x y end include T module Map = struct include Map.Make (T) include Provide_of_sexp (T) end module Set = struct include Set.Make (T) include Provide_of_sexp (T) end let fix (f : (t -> 'a as 'f) -> 'f) (bot : 'f) (e : t) : 'a = let rec fix_f seen e = match e with | RecN _ -> if List.mem ~equal:( == ) seen e then f bot e else f (fix_f (e :: seen)) e | _ -> f (fix_f seen) e in let rec fix_f_seen_nil e = match e with RecN _ -> f (fix_f [e]) e | _ -> f fix_f_seen_nil e in fix_f_seen_nil e let fix_flip (f : ('z -> t -> 'a as 'f) -> 'f) (bot : 'f) (z : 'z) (e : t) = fix (fun f' e z -> f (fun z e -> f' e z) z e) (fun e z -> bot z e) e z let rec ppx strength fs term = let pp_ pp fs term = let pf fmt = Format.pp_open_box fs 2 ; Format.kfprintf (fun fs -> Format.pp_close_box fs ()) fs fmt in match term with | Var {name; id= -1} -> Trace.pp_styled `Bold "%@%s" fs name | Var {name; id= 0} -> Trace.pp_styled `Bold "%%%s" fs name | Var {name; id} -> ( match strength term with | None -> pf "%%%s_%d" name id | Some `Universal -> Trace.pp_styled `Bold "%%%s_%d" fs name id | Some `Existential -> Trace.pp_styled `Cyan "%%%s_%d" fs name id | Some `Anonymous -> Trace.pp_styled `Cyan "_" fs ) | Integer {data} -> Trace.pp_styled `Magenta "%a" fs Z.pp data | Float {data} -> pf "%s" data | Nondet {msg} -> pf "nondet \"%s\"" msg | Label {name} -> pf "%s" name | Ap1 (Signed {bits}, arg) -> pf "((s%i)@ %a)" bits pp arg | Ap1 (Unsigned {bits}, arg) -> pf "((u%i)@ %a)" bits pp arg | Ap1 (Convert {src; dst}, arg) -> pf "((%a)(%a)@ %a)" Typ.pp dst Typ.pp src pp arg | Ap2 (Eq, x, y) -> pf "(%a@ = %a)" pp x pp y | Ap2 (Dq, x, y) -> pf "(%a@ @<2>≠ %a)" pp x pp y | Ap2 (Lt, x, y) -> pf "(%a@ < %a)" pp x pp y | Ap2 (Le, x, y) -> pf "(%a@ @<2>≤ %a)" pp x pp y | Ap2 (Ord, x, y) -> pf "(%a@ ord %a)" pp x pp y | Ap2 (Uno, x, y) -> pf "(%a@ uno %a)" pp x pp y | Add args -> let pp_poly_term fs (monomial, coefficient) = match monomial with | Integer {data} when Z.equal Z.one data -> Q.pp fs coefficient | _ when Q.equal Q.one coefficient -> pp fs monomial | _ -> Format.fprintf fs "%a @<1>× %a" Q.pp coefficient pp monomial in pf "(%a)" (Qset.pp "@ + " pp_poly_term) args | Mul args -> let pp_mono_term fs (factor, exponent) = if Q.equal Q.one exponent then pp fs factor else Format.fprintf fs "%a^%a" pp factor Q.pp exponent in pf "(%a)" (Qset.pp "@ @<2>× " pp_mono_term) args | Ap2 (Div, x, y) -> pf "(%a@ / %a)" pp x pp y | Ap2 (Rem, x, y) -> pf "(%a@ rem %a)" pp x pp y | Ap2 (And, x, y) -> pf "(%a@ && %a)" pp x pp y | Ap2 (Or, x, y) -> pf "(%a@ || %a)" pp x pp y | Ap2 (Xor, x, Integer {data}) when Z.is_true data -> pf "¬%a" pp x | Ap2 (Xor, Integer {data}, x) when Z.is_true data -> pf "¬%a" pp x | Ap2 (Xor, x, y) -> pf "(%a@ xor %a)" pp x pp y | Ap2 (Shl, x, y) -> pf "(%a@ shl %a)" pp x pp y | Ap2 (Lshr, x, y) -> pf "(%a@ lshr %a)" pp x pp y | Ap2 (Ashr, x, y) -> pf "(%a@ ashr %a)" pp x pp y | Ap3 (Conditional, cnd, thn, els) -> pf "(%a@ ? %a@ : %a)" pp cnd pp thn pp els | Ap3 (Extract, agg, off, len) -> pf "%a[%a,%a)" pp agg pp off pp len | Ap1 (Splat, byt) -> pf "%a^" pp byt | Ap2 (Memory, siz, arr) -> pf "@<1>⟨%a,%a@<1>⟩" pp siz pp arr | ApN (Concat, args) when IArray.is_empty args -> pf "@<2>⟨⟩" | ApN (Concat, args) -> pf "(%a)" (IArray.pp "@,^" pp) args | ApN (Record, elts) -> pf "{%a}" (pp_record strength) elts | RecN (Record, elts) -> pf "{|%a|}" (IArray.pp ",@ " pp) elts | Ap1 (Select idx, rcd) -> pf "%a[%i]" pp rcd idx | Ap2 (Update idx, rcd, elt) -> pf "[%a@ @[| %i → %a@]]" pp rcd idx pp elt in fix_flip pp_ (fun _ _ -> ()) fs term [@@warning "-9"] and pp_record strength fs elts = [%Trace.fprintf fs "%a" (fun fs elts -> match String.init (IArray.length elts) ~f:(fun i -> match IArray.get elts i with | Integer {data} -> Char.of_int_exn (Z.to_int data) | _ -> raise (Invalid_argument "not a string") ) with | s -> Format.fprintf fs "@[%s@]" (String.escaped s) | exception _ -> Format.fprintf fs "@[%a@]" (IArray.pp ",@ " (ppx strength)) elts ) elts] let pp = ppx (fun _ -> None) let pp_t = pp let pp_diff fs (x, y) = Format.fprintf fs "-- %a ++ %a" pp x pp y (** Invariant *) (* an indeterminate (factor of a monomial) is any non-Add/Mul/Integer term *) let assert_indeterminate = function | Integer _ | Add _ | Mul _ -> assert false | _ -> assert true (* a monomial is a power product of factors, e.g. * ∏ᵢ xᵢ^nᵢ * for (non-constant) indeterminants xᵢ and positive integer exponents nᵢ *) let assert_monomial mono = match mono with | Mul args -> Qset.iter args ~f:(fun factor exponent -> assert (Q.sign exponent > 0) ; assert_indeterminate factor |> Fn.id ) | _ -> assert_indeterminate mono |> Fn.id (* a polynomial term is a monomial multiplied by a non-zero coefficient * c × ∏ᵢ xᵢ *) let assert_poly_term mono coeff = assert (not (Q.equal Q.zero coeff)) ; match mono with | Integer {data} -> assert (Z.equal Z.one data) | Mul args -> ( match Qset.min_elt args with | None | Some (Integer _, _) -> assert false | Some (_, n) -> assert (Qset.length args > 1 || not (Q.equal Q.one n)) ) ; assert_monomial mono |> Fn.id | _ -> assert_monomial mono |> Fn.id (* a polynomial is a linear combination of monomials, e.g. * ∑ᵢ cᵢ × ∏ⱼ xᵢⱼ * for non-zero constant coefficients cᵢ * and monomials ∏ⱼ xᵢⱼ, one of which may be the empty product 1 *) let assert_polynomial poly = match poly with | Add args -> ( match Qset.min_elt args with | None | Some (Integer _, _) -> assert false | Some (_, k) -> assert (Qset.length args > 1 || not (Q.equal Q.one k)) ) ; Qset.iter args ~f:(fun m c -> assert_poly_term m c |> Fn.id) | _ -> assert false (* aggregate args of Extract and Concat must be aggregate terms, in particular, not variables *) let rec assert_aggregate = function | Ap2 (Memory, _, _) -> () | Ap3 (Extract, a, _, _) -> assert_aggregate a | ApN (Concat, a0N) -> assert (IArray.length a0N <> 1) ; IArray.iter ~f:assert_aggregate a0N | _ -> assert false let invariant e = Invariant.invariant [%here] e [%sexp_of: t] @@ fun () -> match e with | Add _ -> assert_polynomial e |> Fn.id | Mul _ -> assert_monomial e |> Fn.id | Ap2 (Memory, _, _) | Ap3 (Extract, _, _, _) | ApN (Concat, _) -> assert_aggregate e | ApN (Record, elts) | RecN (Record, elts) -> assert (not (IArray.is_empty elts)) | Ap1 (Convert {src= Integer _; dst= Integer _}, _) -> assert false | Ap1 (Convert {src; dst}, _) -> assert (Typ.convertible src dst) ; assert ( not (Typ.equivalent src dst) (* avoid redundant representations *) ) | _ -> () [@@warning "-9"] (** Variables are the terms constructed by [Var] *) module Var = struct include T let pp = pp type strength = t -> [`Universal | `Existential | `Anonymous] option module Map = Map module Set = struct include Set let pp vs = Set.pp pp_t vs let ppx strength vs = Set.pp (ppx strength) vs let pp_xs fs xs = if not (is_empty xs) then Format.fprintf fs "@<2>∃ @[%a@] .@;<1 2>" pp xs end let invariant x = Invariant.invariant [%here] x [%sexp_of: t] @@ fun () -> match x with Var _ -> invariant x | _ -> assert false let id = function Var v -> v.id | x -> violates invariant x let name = function Var v -> v.name | x -> violates invariant x let is_global = function Var v -> v.id = -1 | x -> violates invariant x let of_ = function Var _ as v -> v | _ -> invalid_arg "Var.of_" let of_term = function | Var _ as v -> Some (v |> check invariant) | _ -> None let program ?global name = Var {name; id= (if Option.is_some global then -1 else 0)} let fresh name ~wrt = let max = match Set.max_elt wrt with None -> 0 | Some max -> id max in let x' = Var {name; id= max + 1} in (x', Set.add wrt x') (** Variable renaming substitutions *) module Subst = struct type t = T.t Map.t [@@deriving compare, equal, sexp_of] let t_of_sexp = Map.t_of_sexp T.t_of_sexp let invariant s = Invariant.invariant [%here] s [%sexp_of: t] @@ fun () -> let domain, range = Map.fold s ~init:(Set.empty, Set.empty) ~f:(fun ~key ~data (domain, range) -> assert (not (Set.mem range data)) ; (Set.add domain key, Set.add range data) ) in assert (Set.disjoint domain range) let pp = Map.pp pp_t pp_t let empty = Map.empty let is_empty = Map.is_empty let freshen vs ~wrt = let xs = Set.inter wrt vs in ( if Set.is_empty xs then empty else let wrt = Set.union wrt vs in Set.fold xs ~init:(empty, wrt) ~f:(fun (sub, wrt) x -> let x', wrt = fresh (name x) ~wrt in let sub = Map.add_exn sub ~key:x ~data:x' in (sub, wrt) ) |> fst ) |> check invariant let fold sub ~init ~f = Map.fold sub ~init ~f:(fun ~key ~data s -> f key data s) let invert sub = Map.fold sub ~init:empty ~f:(fun ~key ~data sub' -> Map.add_exn sub' ~key:data ~data:key ) |> check invariant let restrict sub vs = Map.filter_keys ~f:(Set.mem vs) sub |> check invariant let domain sub = Map.fold sub ~init:Set.empty ~f:(fun ~key ~data:_ domain -> Set.add domain key ) let range sub = Map.fold sub ~init:Set.empty ~f:(fun ~key:_ ~data range -> Set.add range data ) let apply sub v = Map.find sub v |> Option.value ~default:v let apply_set sub vs = Map.fold sub ~init:vs ~f:(fun ~key ~data vs -> let vs' = Set.remove vs key in if vs' == vs then vs else ( assert (not (Set.equal vs' vs)) ; Set.add vs' data ) ) |> check (fun vs' -> assert (Set.disjoint (domain sub) vs') ; assert (Set.is_subset (range sub) ~of_:vs') ) end end (** Construct *) (* variables *) let var x = x (* constants *) let integer data = Integer {data} |> check invariant let null = integer Z.zero let zero = integer Z.zero let one = integer Z.one let minus_one = integer Z.minus_one let bool b = integer (Z.of_bool b) let true_ = bool true let false_ = bool false let float data = Float {data} |> check invariant let nondet msg = Nondet {msg} |> check invariant let label ~parent ~name = Label {parent; name} |> check invariant (* type conversions *) let simp_signed bits arg = match arg with | Integer {data} -> integer (Z.signed_extract data 0 bits) | _ -> Ap1 (Signed {bits}, arg) let simp_unsigned bits arg = match arg with | Integer {data} -> integer (Z.extract data 0 bits) | _ -> Ap1 (Unsigned {bits}, arg) let simp_convert src dst arg = if Typ.equivalent src dst then arg else Ap1 (Convert {src; dst}, arg) (* arithmetic *) (* Sums of polynomial terms represented by multisets. A sum ∑ᵢ cᵢ × Xᵢ of monomials Xᵢ with coefficients cᵢ is represented by a multiset where the elements are Xᵢ with multiplicities cᵢ. A constant is treated as the coefficient of the empty monomial, which is the unit of multiplication 1. *) module Sum = struct let empty = Qset.empty let add coeff term sum = assert (not (Q.equal Q.zero coeff)) ; match term with | Integer {data} when Z.equal Z.zero data -> sum | Integer {data} -> Qset.add sum one Q.(coeff * of_z data) | _ -> Qset.add sum term coeff let singleton ?(coeff = Q.one) term = add coeff term empty let map sum ~f = Qset.fold sum ~init:empty ~f:(fun e c sum -> add c (f e) sum) let mul_const const sum = assert (not (Q.equal Q.zero const)) ; if Q.equal Q.one const then sum else Qset.map_counts ~f:(fun _ -> Q.mul const) sum end (* Products of indeterminants represented by multisets. A product ∏ᵢ xᵢ^nᵢ of indeterminates xᵢ is represented by a multiset where the elements are xᵢ and the multiplicities are the exponents nᵢ. *) module Prod = struct let empty = Qset.empty let add term prod = assert (match term with Integer _ -> false | _ -> true) ; Qset.add prod term Q.one let singleton term = add term empty let union = Qset.union end let rec sum_to_term sum = match Qset.length sum with | 0 -> zero | 1 -> ( match Qset.min_elt sum with | Some (Integer _, q) -> rational q | Some (arg, q) when Q.equal Q.one q -> arg | _ -> Add sum ) | _ -> Add sum and rational Q.{num; den} = simp_div (integer num) (integer den) and simp_add_ es poly = (* (coeff × term) + poly *) let f term coeff poly = match (term, poly) with (* (0 × e) + s ==> 0 (optim) *) | _ when Q.equal Q.zero coeff -> poly (* (c × 0) + s ==> s (optim) *) | Integer {data}, _ when Z.equal Z.zero data -> poly (* (c × cᵢ) + cⱼ ==> c×cᵢ+cⱼ *) | Integer {data= i}, Integer {data= j} -> rational Q.((coeff * of_z i) + of_z j) (* (c × ∑ᵢ cᵢ × Xᵢ) + s ==> (∑ᵢ (c × cᵢ) × Xᵢ) + s *) | Add args, _ -> simp_add_ (Sum.mul_const coeff args) poly (* (c₀ × X₀) + (∑ᵢ₌₁ⁿ cᵢ × Xᵢ) ==> ∑ᵢ₌₀ⁿ cᵢ × Xᵢ *) | _, Add args -> sum_to_term (Sum.add coeff term args) (* (c₁ × X₁) + X₂ ==> ∑ᵢ₌₁² cᵢ × Xᵢ for c₂ = 1 *) | _ -> sum_to_term (Sum.add coeff term (Sum.singleton poly)) in Qset.fold ~f es ~init:poly and simp_mul2 e f = match (e, f) with (* c₁ × c₂ ==> c₁×c₂ *) | Integer {data= i}, Integer {data= j} -> integer (Z.mul i j) (* 0 × f ==> 0 *) | Integer {data}, _ when Z.equal Z.zero data -> e (* e × 0 ==> 0 *) | _, Integer {data} when Z.equal Z.zero data -> f (* c × (∑ᵤ cᵤ × ∏ⱼ yᵤⱼ) ==> ∑ᵤ c × cᵤ × ∏ⱼ yᵤⱼ *) | Integer {data}, Add args | Add args, Integer {data} -> sum_to_term (Sum.mul_const (Q.of_z data) args) (* c₁ × x₁ ==> ∑ᵢ₌₁ cᵢ × xᵢ *) | Integer {data= c}, x | x, Integer {data= c} -> sum_to_term (Sum.singleton ~coeff:(Q.of_z c) x) (* (∏ᵤ₌₀ⁱ xᵤ) × (∏ᵥ₌ᵢ₊₁ⁿ xᵥ) ==> ∏ⱼ₌₀ⁿ xⱼ *) | Mul xs1, Mul xs2 -> Mul (Prod.union xs1 xs2) (* (∏ᵢ xᵢ) × (∑ᵤ cᵤ × ∏ⱼ yᵤⱼ) ==> ∑ᵤ cᵤ × ∏ᵢ xᵢ × ∏ⱼ yᵤⱼ *) | (Mul prod as m), Add sum | Add sum, (Mul prod as m) -> sum_to_term (Sum.map sum ~f:(function | Mul args -> Mul (Prod.union prod args) | Integer _ as c -> simp_mul2 c m | mono -> Mul (Prod.add mono prod) )) (* x₀ × (∏ᵢ₌₁ⁿ xᵢ) ==> ∏ᵢ₌₀ⁿ xᵢ *) | Mul xs1, x | x, Mul xs1 -> Mul (Prod.add x xs1) (* e × (∑ᵤ cᵤ × ∏ⱼ yᵤⱼ) ==> ∑ᵤ e × cᵤ × ∏ⱼ yᵤⱼ *) | Add args, e | e, Add args -> simp_add_ (Sum.map ~f:(fun m -> simp_mul2 e m) args) zero (* x₁ × x₂ ==> ∏ᵢ₌₁² xᵢ *) | _ -> Mul (Prod.add e (Prod.singleton f)) and simp_div x y = match (x, y) with (* i / j *) | Integer {data= i}, Integer {data= j} when not (Z.equal Z.zero j) -> integer (Z.div i j) (* e / 1 ==> e *) | e, Integer {data} when Z.equal Z.one data -> e (* e / -1 ==> -1×e *) | e, (Integer {data} as c) when Z.equal Z.minus_one data -> simp_mul2 e c (* (∑ᵢ cᵢ × Xᵢ) / z ==> ∑ᵢ cᵢ/z × Xᵢ *) | Add args, Integer {data} -> sum_to_term (Sum.mul_const Q.(inv (of_z data)) args) | _ -> Ap2 (Div, x, y) let simp_rem x y = match (x, y) with (* i % j *) | Integer {data= i}, Integer {data= j} when not (Z.equal Z.zero j) -> integer (Z.rem i j) (* e % 1 ==> 0 *) | _, Integer {data} when Z.equal Z.one data -> zero | _ -> Ap2 (Rem, x, y) let simp_add es = simp_add_ es zero let simp_add2 e f = simp_add_ (Sum.singleton e) f let simp_negate x = simp_mul2 minus_one x let simp_sub x y = match (x, y) with (* i - j *) | Integer {data= i}, Integer {data= j} -> integer (Z.sub i j) (* x - y ==> x + (-1 * y) *) | _ -> simp_add2 x (simp_negate y) let simp_mul es = (* (bas ^ pwr) × term *) let rec mul_pwr bas pwr term = if Q.equal Q.zero pwr then term else mul_pwr bas Q.(pwr - one) (simp_mul2 bas term) in Qset.fold es ~init:one ~f:(fun bas pwr term -> if Q.sign pwr >= 0 then mul_pwr bas pwr term else simp_div term (mul_pwr bas (Q.neg pwr) one) ) (* if-then-else *) let simp_cond cnd thn els = match cnd with (* ¬(true ? t : e) ==> t *) | Integer {data} when Z.is_true data -> thn (* ¬(false ? t : e) ==> e *) | Integer {data} when Z.is_false data -> els | _ -> Ap3 (Conditional, cnd, thn, els) (* aggregate sizes *) let rec agg_size_exn = function | Ap2 (Memory, n, _) | Ap3 (Extract, _, _, n) -> n | ApN (Concat, a0U) -> IArray.fold a0U ~init:zero ~f:(fun a0I aJ -> simp_add2 a0I (agg_size_exn aJ) ) | _ -> invalid_arg "agg_size_exn" let agg_size e = try Some (agg_size_exn e) with Invalid_argument _ -> None (* boolean / bitwise *) let rec is_boolean = function | Ap1 ((Unsigned {bits= 1} | Convert {dst= Integer {bits= 1; _}; _}), _) |Ap2 ((Eq | Dq | Lt | Le), _, _) -> true | Ap2 ((Div | Rem | And | Or | Xor | Shl | Lshr | Ashr), x, y) |Ap3 (Conditional, _, x, y) -> is_boolean x || is_boolean y | _ -> false let rec simp_and x y = match (x, y) with (* i && j *) | Integer {data= i}, Integer {data= j} -> integer (Z.logand i j) (* e && true ==> e *) | (Integer {data}, e | e, Integer {data}) when Z.is_true data -> e (* e && false ==> 0 *) | ((Integer {data} as f), _ | _, (Integer {data} as f)) when Z.is_false data -> f (* e && (c ? t : f) ==> (c ? e && t : e && f) *) | e, Ap3 (Conditional, c, t, f) | Ap3 (Conditional, c, t, f), e -> simp_cond c (simp_and e t) (simp_and e f) (* e && e ==> e *) | _ when equal x y -> x | _ -> Ap2 (And, x, y) let rec simp_or x y = match (x, y) with (* i || j *) | Integer {data= i}, Integer {data= j} -> integer (Z.logor i j) (* e || true ==> true *) | ((Integer {data} as t), _ | _, (Integer {data} as t)) when Z.is_true data -> t (* e || false ==> e *) | (Integer {data}, e | e, Integer {data}) when Z.is_false data -> e (* e || (c ? t : f) ==> (c ? e || t : e || f) *) | e, Ap3 (Conditional, c, t, f) | Ap3 (Conditional, c, t, f), e -> simp_cond c (simp_or e t) (simp_or e f) (* e || e ==> e *) | _ when equal x y -> x | _ -> Ap2 (Or, x, y) (* memory *) let empty_agg = ApN (Concat, IArray.of_array [||]) let simp_splat byt = Ap1 (Splat, byt) let simp_memory siz arr = (* ⟨n,α⟩ ==> α when n ≡ |α| *) match agg_size arr with | Some n when equal siz n -> arr | _ -> Ap2 (Memory, siz, arr) type pcmp = Lt | Eq | Gt | Unknown let partial_compare x y : pcmp = match simp_sub x y with | Integer {data} -> ( match Int.sign (Z.sign data) with Neg -> Lt | Zero -> Eq | Pos -> Gt ) | _ -> Unknown let partial_ge x y = match partial_compare x y with Gt | Eq -> true | Lt | Unknown -> false let rec simp_extract agg off len = [%Trace.call fun {pf} -> pf "%a" pp (Ap3 (Extract, agg, off, len))] ; (* _[_,0) ==> ⟨⟩ *) ( if equal len zero then empty_agg else let o_l = simp_add2 off len in match agg with (* α[m,k)[o,l) ==> α[m+o,l) when k ≥ o+l *) | Ap3 (Extract, a, m, k) when partial_ge k o_l -> simp_extract a (simp_add2 m off) len (* ⟨n,E^⟩[o,l) ==> ⟨l,E^⟩ when n ≥ o+l *) | Ap2 (Memory, n, (Ap1 (Splat, _) as e)) when partial_ge n o_l -> simp_memory len e (* ⟨n,a⟩[0,n) ==> ⟨n,a⟩ *) | Ap2 (Memory, n, _) when equal off zero && equal n len -> agg (* For (α₀^α₁)[o,l) there are 3 cases: * * ⟨...⟩^⟨...⟩ * [,) * o < o+l ≤ |α₀| : (α₀^α₁)[o,l) ==> α₀[o,l) ^ α₁[0,0) * * ⟨...⟩^⟨...⟩ * [ , ) * o ≤ |α₀| < o+l : (α₀^α₁)[o,l) ==> α₀[o,|α₀|-o) ^ α₁[0,l-(|α₀|-o)) * * ⟨...⟩^⟨...⟩ * [,) * |α₀| ≤ o : (α₀^α₁)[o,l) ==> α₀[o,0) ^ α₁[o-|α₀|,l) * * So in general: * * (α₀^α₁)[o,l) ==> α₀[o,l₀) ^ α₁[o₁,l-l₀) * where l₀ = max 0 (min l |α₀|-o) * o₁ = max 0 o-|α₀| *) | ApN (Concat, na1N) -> ( match len with | Integer {data= l} -> IArray.fold_map_until na1N ~init:(l, off) ~f:(fun (l, oI) naI -> let nI = agg_size_exn naI in if Z.equal Z.zero l then Continue ((l, oI), simp_extract naI oI zero) else let oI_nI = simp_sub oI nI in match oI_nI with | Integer {data} -> let oJ = if Z.sign data <= 0 then zero else oI_nI in let lI = Z.(max zero (min l (neg data))) in let l = Z.(l - lI) in Continue ((l, oJ), simp_extract naI oI (integer lI)) | _ -> Stop (Ap3 (Extract, agg, off, len)) ) ~finish:(fun (_, e1N) -> simp_concat e1N) | _ -> Ap3 (Extract, agg, off, len) ) (* α[o,l) *) | _ -> Ap3 (Extract, agg, off, len) ) |> [%Trace.retn fun {pf} -> pf "%a" pp] and simp_concat xs = [%Trace.call fun {pf} -> pf "%a" pp (ApN (Concat, xs))] ; (* (α^(β^γ)^δ) ==> (α^β^γ^δ) *) let flatten xs = let exists_sub_Concat = IArray.exists ~f:(function ApN (Concat, _) -> true | _ -> false) in let concat_sub_Concat xs = IArray.concat (IArray.fold_right xs ~init:[] ~f:(fun x s -> match x with | ApN (Concat, ys) -> ys :: s | x -> IArray.of_array [|x|] :: s )) in if exists_sub_Concat xs then concat_sub_Concat xs else xs in let simp_adjacent e f = match (e, f) with (* ⟨n,a⟩[o,k)^⟨n,a⟩[o+k,l) ==> ⟨n,a⟩[o,k+l) when n ≥ o+k+l *) | ( Ap3 (Extract, (Ap2 (Memory, n, _) as na), o, k) , Ap3 (Extract, na', o_k, l) ) when equal na na' && equal o_k (simp_add2 o k) && partial_ge n (simp_add2 o_k l) -> Some (simp_extract na o (simp_add2 k l)) (* ⟨m,E^⟩^⟨n,E^⟩ ==> ⟨m+n,E^⟩ *) | Ap2 (Memory, m, (Ap1 (Splat, _) as a)), Ap2 (Memory, n, a') when equal a a' -> Some (simp_memory (simp_add2 m n) a) | _ -> None in let xs = flatten xs in let xs = IArray.combine_adjacent ~f:simp_adjacent xs in (if IArray.length xs = 1 then IArray.get xs 0 else ApN (Concat, xs)) |> [%Trace.retn fun {pf} -> pf "%a" pp] (* comparison *) let simp_lt x y = match (x, y) with | Integer {data= i}, Integer {data= j} -> bool (Z.lt i j) | _ -> Ap2 (Lt, x, y) let simp_le x y = match (x, y) with | Integer {data= i}, Integer {data= j} -> bool (Z.leq i j) | _ -> Ap2 (Le, x, y) let simp_ord x y = Ap2 (Ord, x, y) let simp_uno x y = Ap2 (Uno, x, y) let rec simp_eq x y = match match Ordering.of_int (compare x y) with | Equal -> None | Less -> Some (x, y) | Greater -> Some (y, x) with (* e = e ==> true *) | None -> bool true | Some (x, y) -> ( match (x, y) with (* i = j ==> false when i ≠ j *) | Integer _, Integer _ -> bool false (* b = false ==> ¬b *) | b, Integer {data} when Z.is_false data && is_boolean b -> simp_not b (* b = true ==> b *) | b, Integer {data} when Z.is_true data && is_boolean b -> b (* e = (c ? t : f) ==> (c ? e = t : e = f) *) | e, Ap3 (Conditional, c, t, f) | Ap3 (Conditional, c, t, f), e -> simp_cond c (simp_eq e t) (simp_eq e f) (* α^β^δ = α^γ^δ ==> β = γ *) | ApN (Concat, a), ApN (Concat, b) -> let m = IArray.length a in let n = IArray.length b in let length_common_prefix = let rec find_lcp i = if equal (IArray.get a i) (IArray.get b i) then find_lcp (i + 1) else i in find_lcp 0 in let length_common_suffix = let rec find_lcs i = if equal (IArray.get a (m - 1 - i)) (IArray.get b (n - 1 - i)) then find_lcs (i + 1) else i in find_lcs 0 in let length_common = length_common_prefix + length_common_suffix in if length_common = 0 then Ap2 (Eq, x, y) else let pos = length_common_prefix in let a = IArray.sub ~pos ~len:(m - length_common) a in let b = IArray.sub ~pos ~len:(n - length_common) b in simp_eq (simp_concat a) (simp_concat b) | ( (Ap2 (Memory, _, _) | Ap3 (Extract, _, _, _) | ApN (Concat, _)) , (Ap2 (Memory, _, _) | Ap3 (Extract, _, _, _) | ApN (Concat, _)) ) -> Ap2 (Eq, x, y) (* x = α ==> ⟨x,|α|⟩ = α *) | ( x , ( (Ap2 (Memory, _, _) | Ap3 (Extract, _, _, _) | ApN (Concat, _)) as a ) ) |( ( (Ap2 (Memory, _, _) | Ap3 (Extract, _, _, _) | ApN (Concat, _)) as a ) , x ) -> simp_eq (Ap2 (Memory, agg_size_exn a, x)) a | x, y -> Ap2 (Eq, x, y) ) and simp_dq x y = match (x, y) with (* e ≠ (c ? t : f) ==> (c ? e ≠ t : e ≠ f) *) | e, Ap3 (Conditional, c, t, f) | Ap3 (Conditional, c, t, f), e -> simp_cond c (simp_dq e t) (simp_dq e f) | _ -> ( match simp_eq x y with | Ap2 (Eq, x, y) -> Ap2 (Dq, x, y) | b -> simp_not b ) (* negation-normal form *) and simp_not term = match term with (* ¬(x = y) ==> x ≠ y *) | Ap2 (Eq, x, y) -> simp_dq x y (* ¬(x ≠ y) ==> x = y *) | Ap2 (Dq, x, y) -> simp_eq x y (* ¬(x < y) ==> y <= x *) | Ap2 (Lt, x, y) -> simp_le y x (* ¬(x <= y) ==> y < x *) | Ap2 (Le, x, y) -> simp_lt y x (* ¬(x ≠ nan ∧ y ≠ nan) ==> x = nan ∨ y = nan *) | Ap2 (Ord, x, y) -> simp_uno x y (* ¬(x = nan ∨ y = nan) ==> x ≠ nan ∧ y ≠ nan *) | Ap2 (Uno, x, y) -> simp_ord x y (* ¬(a ∧ b) ==> ¬a ∨ ¬b *) | Ap2 (And, x, y) -> simp_or (simp_not x) (simp_not y) (* ¬(a ∨ b) ==> ¬a ∧ ¬b *) | Ap2 (Or, x, y) -> simp_and (simp_not x) (simp_not y) (* ¬¬e ==> e *) | Ap2 (Xor, Integer {data}, e) when Z.is_true data -> e | Ap2 (Xor, e, Integer {data}) when Z.is_true data -> e (* ¬(c ? t : e) ==> c ? ¬t : ¬e *) | Ap3 (Conditional, cnd, thn, els) -> simp_cond cnd (simp_not thn) (simp_not els) (* ¬i ==> -i-1 *) | Integer {data} -> integer (Z.lognot data) (* ¬e ==> true xor e *) | e -> Ap2 (Xor, true_, e) (* bitwise *) let simp_xor x y = match (x, y) with (* i xor j *) | Integer {data= i}, Integer {data= j} -> integer (Z.logxor i j) (* true xor b ==> ¬b *) | Integer {data}, b when Z.is_true data && is_boolean b -> simp_not b | b, Integer {data} when Z.is_true data && is_boolean b -> simp_not b (* e xor e ==> 0 *) | _ when equal x y -> zero | _ -> Ap2 (Xor, x, y) let simp_shl x y = match (x, y) with (* i shl j *) | Integer {data= i}, Integer {data= j} when Z.sign j >= 0 -> integer (Z.shift_left i (Z.to_int j)) (* e shl 0 ==> e *) | e, Integer {data} when Z.equal Z.zero data -> e | _ -> Ap2 (Shl, x, y) let simp_lshr x y = match (x, y) with (* i lshr j *) | Integer {data= i}, Integer {data= j} when Z.sign j >= 0 -> integer (Z.shift_right_trunc i (Z.to_int j)) (* e lshr 0 ==> e *) | e, Integer {data} when Z.equal Z.zero data -> e | _ -> Ap2 (Lshr, x, y) let simp_ashr x y = match (x, y) with (* i ashr j *) | Integer {data= i}, Integer {data= j} when Z.sign j >= 0 -> integer (Z.shift_right i (Z.to_int j)) (* e ashr 0 ==> e *) | e, Integer {data} when Z.equal Z.zero data -> e | _ -> Ap2 (Ashr, x, y) (* records *) let simp_record elts = ApN (Record, elts) let simp_select idx rcd = Ap1 (Select idx, rcd) let simp_update idx rcd elt = Ap2 (Update idx, rcd, elt) let rec_app key = let memo_id = Hashtbl.create key in let dummy = null in Staged.stage @@ fun ~id op elt_thks -> match Hashtbl.find memo_id id with | None -> (* Add placeholder to prevent computing [elts] in calls to [rec_app] from [elt_thks] for recursive occurrences of [id]. *) let elta = Array.create ~len:(IArray.length elt_thks) dummy in let elts = IArray.of_array elta in Hashtbl.set memo_id ~key:id ~data:elts ; IArray.iteri elt_thks ~f:(fun i (lazy elt) -> elta.(i) <- elt) ; RecN (op, elts) |> check invariant | Some elts -> (* Do not check invariant as invariant will be checked above after the thunks are forced, before which invariant-checking may spuriously fail. Note that it is important that the value constructed here shares the array in the memo table, so that the update after forcing the recursive thunks also updates this value. *) RecN (op, elts) (* dispatching for normalization and invariant checking *) let norm1 op x = ( match op with | Signed {bits} -> simp_signed bits x | Unsigned {bits} -> simp_unsigned bits x | Convert {src; dst} -> simp_convert src dst x | Splat -> simp_splat x | Select idx -> simp_select idx x ) |> check invariant let norm2 op x y = ( match op with | Memory -> simp_memory x y | Eq -> simp_eq x y | Dq -> simp_dq x y | Lt -> simp_lt x y | Le -> simp_le x y | Ord -> simp_ord x y | Uno -> simp_uno x y | Div -> simp_div x y | Rem -> simp_rem x y | And -> simp_and x y | Or -> simp_or x y | Xor -> simp_xor x y | Shl -> simp_shl x y | Lshr -> simp_lshr x y | Ashr -> simp_ashr x y | Update idx -> simp_update idx x y ) |> check invariant let norm3 op x y z = ( match op with | Conditional -> simp_cond x y z | Extract -> simp_extract x y z ) |> check invariant let normN op xs = (match op with Concat -> simp_concat xs | Record -> simp_record xs) |> check invariant (* exposed interface *) let signed bits term = norm1 (Signed {bits}) term let unsigned bits term = norm1 (Unsigned {bits}) term let convert src ~to_:dst term = norm1 (Convert {src; dst}) term let eq = norm2 Eq let dq = norm2 Dq let lt = norm2 Lt let le = norm2 Le let ord = norm2 Ord let uno = norm2 Uno let neg e = simp_negate e |> check invariant let add e f = simp_add2 e f |> check invariant let addN args = simp_add args |> check invariant let sub e f = simp_sub e f |> check invariant let mul e f = simp_mul2 e f |> check invariant let mulN args = simp_mul args |> check invariant let div = norm2 Div let rem = norm2 Rem let and_ = norm2 And let or_ = norm2 Or let not_ e = simp_not e |> check invariant let xor = norm2 Xor let shl = norm2 Shl let lshr = norm2 Lshr let ashr = norm2 Ashr let conditional ~cnd ~thn ~els = norm3 Conditional cnd thn els let splat byt = norm1 Splat byt let memory ~siz ~arr = norm2 Memory siz arr let extract ~agg ~off ~len = norm3 Extract agg off len let concat xs = normN Concat (IArray.of_array xs) let record elts = normN Record elts let select ~rcd ~idx = norm1 (Select idx) rcd let update ~rcd ~idx ~elt = norm2 (Update idx) rcd elt let size_of t = integer (Z.of_int (Typ.size_of t)) let eq_concat (siz, arr) ms = eq (memory ~siz ~arr) (concat (Array.map ~f:(fun (siz, arr) -> memory ~siz ~arr) ms)) (** Transform *) let map e ~f = let map1 op ~f x = let x' = f x in if x' == x then e else norm1 op x' in let map2 op ~f x y = let x' = f x in let y' = f y in if x' == x && y' == y then e else norm2 op x' y' in let map3 op ~f x y z = let x' = f x in let y' = f y in let z' = f z in if x' == x && y' == y && z' == z then e else norm3 op x' y' z' in let mapN op ~f xs = let xs' = IArray.map_preserving_phys_equal ~f xs in if xs' == xs then e else normN op xs' in let map_qset mk ~f args = let args' = Qset.map ~f:(fun arg q -> (f arg, q)) args in if args' == args then e else mk args' in match e with | Add args -> map_qset addN ~f args | Mul args -> map_qset mulN ~f args | Ap1 (op, x) -> map1 op ~f x | Ap2 (op, x, y) -> map2 op ~f x y | Ap3 (op, x, y, z) -> map3 op ~f x y z | ApN (op, xs) -> mapN op ~f xs | RecN (_, xs) -> assert ( xs == IArray.map_preserving_phys_equal ~f xs || fail "Term.map does not support updating subterms of RecN." () ) ; e | Var _ | Label _ | Nondet _ | Float _ | Integer _ -> e (** Pre-order transformation that preserves cycles. Each subterm [x] from root to leaves is presented to [f]. If [f x = Some x'] then the subterms of [x] are not traversed and [x] is transformed to [x']. Otherwise traversal proceeds to the subterms of [x], followed by rebuilding the term structure on the transformed subterms. Cycles (through terms involving [RecN]) are preserved. *) let map_rec_pre ~f e = let rec map_rec_pre_f memo e = match f e with | Some e' -> e' | None -> ( match e with | RecN (op, xs) -> ( match List.Assoc.find ~equal:( == ) memo e with | None -> let xs' = IArray.to_array xs in let e' = RecN (op, IArray.of_array xs') in let memo = List.Assoc.add ~equal:( == ) memo e e' in let changed = ref false in Array.map_inplace xs' ~f:(fun x -> let x' = map_rec_pre_f memo x in if x' != x then changed := true ; x' ) ; if !changed then e' else e | Some e' -> e' ) | _ -> map ~f:(map_rec_pre_f memo) e ) in map_rec_pre_f [] e let rename sub e = map_rec_pre e ~f:(function | Var _ as v -> Some (Var.Subst.apply sub v) | _ -> None ) (** Traverse *) let iter e ~f = match e with | Ap1 (_, x) -> f x | Ap2 (_, x, y) -> f x ; f y | Ap3 (_, x, y, z) -> f x ; f y ; f z | ApN (_, xs) | RecN (_, xs) -> IArray.iter ~f xs | Add args | Mul args -> Qset.iter ~f:(fun arg _ -> f arg) args | Var _ | Label _ | Nondet _ | Float _ | Integer _ -> () let exists e ~f = match e with | Ap1 (_, x) -> f x | Ap2 (_, x, y) -> f x || f y | Ap3 (_, x, y, z) -> f x || f y || f z | ApN (_, xs) | RecN (_, xs) -> IArray.exists ~f xs | Add args | Mul args -> Qset.exists ~f:(fun arg _ -> f arg) args | Var _ | Label _ | Nondet _ | Float _ | Integer _ -> false let fold e ~init:s ~f = match e with | Ap1 (_, x) -> f x s | Ap2 (_, x, y) -> f y (f x s) | Ap3 (_, x, y, z) -> f z (f y (f x s)) | ApN (_, xs) | RecN (_, xs) -> IArray.fold ~f:(fun s x -> f x s) xs ~init:s | Add args | Mul args -> Qset.fold ~f:(fun e _ s -> f e s) args ~init:s | Var _ | Label _ | Nondet _ | Float _ | Integer _ -> s let fold_terms e ~init ~f = let fold_terms_ fold_terms_ e s = let s = match e with | Ap1 (_, x) -> fold_terms_ x s | Ap2 (_, x, y) -> fold_terms_ y (fold_terms_ x s) | Ap3 (_, x, y, z) -> fold_terms_ z (fold_terms_ y (fold_terms_ x s)) | ApN (_, xs) | RecN (_, xs) -> IArray.fold ~f:(fun s x -> fold_terms_ x s) xs ~init:s | Add args | Mul args -> Qset.fold args ~init:s ~f:(fun arg _ s -> fold_terms_ arg s) | Var _ | Label _ | Nondet _ | Float _ | Integer _ -> s in f s e in fix fold_terms_ (fun _ s -> s) e init let fold_vars e ~init ~f = fold_terms e ~init ~f:(fun s -> function | Var _ as v -> f s (v :> Var.t) | _ -> s ) (** Query *) let fv e = fold_vars e ~f:Set.add ~init:Var.Set.empty let is_true = function Integer {data} -> Z.is_true data | _ -> false let is_false = function Integer {data} -> Z.is_false data | _ -> false (** Solve *) let solve_zero_eq ?for_ e = [%Trace.call fun {pf} -> pf "%a%a" pp e (Option.pp " for %a" pp) for_] ; ( match e with | Add args -> let+ c, q = match for_ with | Some f -> let q = Qset.count args f in if Q.equal Q.zero q then None else Some (f, q) | None -> Some (Qset.min_elt_exn args) in let n = sum_to_term (Qset.remove args c) in let d = rational (Q.neg q) in let r = div n d in (c, r) | _ -> None ) |> [%Trace.retn fun {pf} s -> pf "%a" (Option.pp "%a" (fun fs (c, r) -> Format.fprintf fs "%a ↦ %a" pp c pp r )) s ; match (for_, s) with | Some f, Some (c, _) -> assert (equal f c) | _ -> ()]