(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Symbolic Execution *) open Fol [@@@warning "+9"] module Fresh : sig (** Monad to manage generation of fresh variables. A value of type ['a t] is a value of type ['a] which may contain as-yet-unnamed variables. *) include Monad.S val gen : wrt:Var.Set.t -> 'a t -> Var.Set.t * 'a (** [gen ~wrt a] generates names that are fresh with respect to [wrt] for all unnamed variables in [a], and yields the set of generated variables together with [a] expressed in terms of those variables. *) val var : string -> Term.t t (** Fresh variable whose name is based on the given string. *) val seg : ?bas:Term.t -> ?len:Term.t -> ?siz:Term.t -> ?cnt:Term.t -> Term.t -> Sh.seg t (** Segment with fresh variables for omitted arguments. *) val assign : ws:Var.Set.t -> rs:Var.Set.t -> (Var.Subst.t * Var.Set.t) t (** Renaming of fresh ghosts for overwritten variables, and remaining modified but not read variables, given written variables [ws] and read (or appearing in the precondition) variables [rs]. *) end = struct type ctx = {wrt: Var.Set.t; xs: Var.Set.t} include Monad.State (struct type t = ctx end) open Import let gen ~wrt m = let a, {xs; wrt= _} = run m {wrt; xs= Var.Set.empty} in (xs, a) let var nam {wrt; xs} = let x, wrt = Var.fresh nam ~wrt in let xs = Var.Set.add x xs in return (Term.var x) {wrt; xs} let seg ?bas ?len ?siz ?cnt loc = let freshen term nam = match term with Some term -> return term | None -> var nam in let* bas = freshen bas "b" in let* len = freshen len "m" in let* siz = freshen siz "n" in let* cnt = freshen cnt "a" in return Sh.{loc; bas; len; siz; cnt} let assign ~ws ~rs {wrt; xs} = let ovs = Var.Set.inter ws rs in let Var.Subst.{sub; dom; rng}, wrt = Var.Subst.freshen ovs ~wrt in let ms = Var.Set.diff ws dom in let xs = Var.Set.union xs rng in return (sub, ms) {wrt; xs} end (** generic command: [{foot ∧ sub} ms := - {post}] *) type spec = {foot: Sh.t; sub: Var.Subst.t; ms: Var.Set.t; post: Sh.t} let gen_spec us specm = let xs, spec = Fresh.gen ~wrt:us specm in let us = Var.Set.union xs (Var.Set.union spec.foot.us spec.post.us) in let foot = Sh.extend_us us spec.foot in let post = Sh.extend_us us spec.post in (xs, {spec with foot; post}) (* * Instruction small axioms *) let null_eq ptr = Sh.pure (Formula.eq0 ptr) let eq_concat (siz, cnt) ms = Formula.eq (Term.sized ~siz ~seq:cnt) (Term.concat (Array.map ~f:(fun (siz, cnt) -> Term.sized ~siz ~seq:cnt) ms)) open Fresh.Import (* { emp } * rs := es * { *ᵢ rᵢ=eᵢΘ } *) let move_spec reg_exps = let foot = Sh.emp in let ws, rs = IArray.fold reg_exps (Var.Set.empty, Var.Set.empty) ~f:(fun (reg, exp) (ws, rs) -> (Var.Set.add reg ws, Var.Set.union rs (Term.fv exp)) ) in let+ sub, ms = Fresh.assign ~ws ~rs in let post = IArray.fold reg_exps Sh.emp ~f:(fun (reg, exp) post -> Sh.and_ (Formula.eq (Term.var reg) (Term.rename sub exp)) post ) in {foot; sub; ms; post} (* { p-[b;m)->⟨l,α⟩ } * load l r p * { r=αΘ * (p-[b;m)->⟨l,α⟩)Θ } *) let load_spec reg ptr len = let* seg = Fresh.seg ptr ~siz:len in let foot = Sh.seg seg in let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in let post = Sh.and_ (Formula.eq (Term.var reg) (Term.rename sub seg.cnt)) (Sh.rename sub foot) in {foot; sub; ms; post} (* { p-[b;m)->⟨l,α⟩ } * store l p e * { p-[b;m)->⟨l,e⟩ } *) let store_spec ptr exp len = let+ seg = Fresh.seg ptr ~siz:len in let foot = Sh.seg seg in let post = Sh.seg {seg with cnt= exp} in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d-[b;m)->⟨l,α⟩ } * memset l d b * { d-[b;m)->⟨l,b^⟩ } *) let memset_spec dst byt len = let+ seg = Fresh.seg dst ~siz:len in let foot = Sh.seg seg in let post = Sh.seg {seg with cnt= Term.splat byt} in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d=s * l=0 * d-[b;m)->⟨l,α⟩ } * memcpy l d s * { d-[b;m)->⟨l,α⟩ } *) let memcpy_eq_spec dst src len = let+ seg = Fresh.seg dst ~len in let dst_heap = Sh.seg seg in let foot = Sh.and_ (Formula.eq dst src) (Sh.and_ (Formula.eq0 len) dst_heap) in let post = dst_heap in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ } * memcpy l d s * { d-[b;m)->⟨l,α'⟩ * s-[b';m')->⟨l,α'⟩ } *) let memcpy_dj_spec dst src len = let* dst_seg = Fresh.seg dst ~siz:len in let dst_heap = Sh.seg dst_seg in let+ src_seg = Fresh.seg src ~siz:len in let src_heap = Sh.seg src_seg in let dst_seg' = {dst_seg with cnt= src_seg.cnt} in let dst_heap' = Sh.seg dst_seg' in let foot = Sh.star dst_heap src_heap in let post = Sh.star dst_heap' src_heap in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} let memcpy_specs dst src len = [memcpy_eq_spec dst src len; memcpy_dj_spec dst src len] (* { d=s * d-[b;m)->⟨l,α⟩ } * memmov l d s * { d-[b;m)->⟨l,α⟩ } *) let memmov_eq_spec dst src len = let+ dst_seg = Fresh.seg dst ~len in let dst_heap = Sh.seg dst_seg in let foot = Sh.and_ (Formula.eq dst src) dst_heap in let post = dst_heap in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ } * memmov l d s * { d-[b;m)->⟨l,α'⟩ * s-[b';m')->⟨l,α'⟩ } *) let memmov_dj_spec = memcpy_dj_spec (* memmov footprint for dst < src case *) let memmov_foot dst src len = let* bas = Fresh.var "b" in let* siz = Fresh.var "m" in let* cnt_dst = Fresh.var "a" in let* cnt_mid = Fresh.var "a" in let* cnt_src = Fresh.var "a" in let src_dst = Term.sub src dst in let mem_dst = (src_dst, cnt_dst) in let siz_mid = Term.sub len src_dst in let mem_mid = (siz_mid, cnt_mid) in let mem_src = (src_dst, cnt_src) in let mem_dst_mid_src = [|mem_dst; mem_mid; mem_src|] in let* siz_dst_mid_src = Fresh.var "m" in let+ cnt_dst_mid_src = Fresh.var "a" in let eq_mem_dst_mid_src = eq_concat (siz_dst_mid_src, cnt_dst_mid_src) mem_dst_mid_src in let seg = Sh.seg {loc= dst; bas; len= siz; siz= siz_dst_mid_src; cnt= cnt_dst_mid_src} in let foot = Sh.and_ eq_mem_dst_mid_src (Sh.and_ (Formula.lt dst src) (Sh.and_ (Formula.lt src (Term.add dst len)) seg)) in (bas, siz, mem_dst, mem_mid, mem_src, foot) (* { d⟨s-d,α⟩^⟨l-(s-d),β⟩^⟨s-d,γ⟩ } * memmov l d s * { d-[b;m)->⟨l-(s-d),β⟩^⟨s-d,γ⟩^⟨s-d,γ⟩ } *) let memmov_dn_spec dst src len = let* bas, siz, _, mem_mid, mem_src, foot = memmov_foot dst src len in let mem_mid_src_src = [|mem_mid; mem_src; mem_src|] in let* siz_mid_src_src = Fresh.var "m" in let+ cnt_mid_src_src = Fresh.var "a" in let eq_mem_mid_src_src = eq_concat (siz_mid_src_src, cnt_mid_src_src) mem_mid_src_src in let post = Sh.and_ eq_mem_mid_src_src (Sh.seg { loc= dst ; bas ; len= siz ; siz= siz_mid_src_src ; cnt= cnt_mid_src_src }) in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { s⟨d-s,α⟩^⟨l-(d-s),β⟩^⟨d-s,γ⟩ } * memmov l d s * { s-[b;m)->⟨d-s,α⟩^⟨d-s,α⟩^⟨l-(d-s),β⟩ } *) let memmov_up_spec dst src len = let* bas, siz, mem_src, mem_mid, _, foot = memmov_foot src dst len in let mem_src_src_mid = [|mem_src; mem_src; mem_mid|] in let* siz_src_src_mid = Fresh.var "m" in let+ cnt_src_src_mid = Fresh.var "a" in let eq_mem_src_src_mid = eq_concat (siz_src_src_mid, cnt_src_src_mid) mem_src_src_mid in let post = Sh.and_ eq_mem_src_src_mid (Sh.seg { loc= src ; bas ; len= siz ; siz= siz_src_src_mid ; cnt= cnt_src_src_mid }) in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} let memmov_specs dst src len = [ memmov_eq_spec dst src len ; memmov_dj_spec dst src len ; memmov_dn_spec dst src len ; memmov_up_spec dst src len ] (* { emp } * alloc r [n × l] * { ∃α'. r-[r;(n×l)Θ)->⟨(n×l)Θ,α'⟩ } *) let alloc_spec reg num len = let foot = Sh.emp in let siz = Term.mulq (Q.of_int len) num in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in let loc = Term.var reg in let siz = Term.rename sub siz in let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz in let post = Sh.seg seg in {foot; sub; ms; post} (* * Memory management - see e.g. http://jemalloc.net/jemalloc.3.html *) (* { p=0 ∨ p-[p;m)->⟨m,α⟩ } * free p * { emp } *) let free_spec ptr = let* len = Fresh.var "m" in let+ seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in let foot = Sh.or_ (null_eq ptr) (Sh.seg seg) in let post = Sh.emp in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { p-[p;m)->⟨m,α⟩ } * dallocx p * { emp } *) let dallocx_spec ptr = let* len = Fresh.var "m" in let+ seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in let foot = Sh.seg seg in let post = Sh.emp in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { emp } * malloc r s * { r=0 ∨ ∃α'. r-[r;sΘ)->⟨sΘ,α'⟩ } *) let malloc_spec reg siz = let foot = Sh.emp in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in let loc = Term.var reg in let siz = Term.rename sub siz in let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz in let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in {foot; sub; ms; post} (* { s≠0 } * mallocx r s * { r=0 ∨ ∃α'. r-[r;sΘ)->⟨sΘ,α'⟩ } *) let mallocx_spec reg siz = let foot = Sh.pure (Formula.dq0 siz) in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in let loc = Term.var reg in let siz = Term.rename sub siz in let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz in let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in {foot; sub; ms; post} (* { emp } * calloc r [n × l] * { r=0 ∨ r-[r;(n×l)Θ)->⟨(n×l)Θ,0^⟩ } *) let calloc_spec reg num len = let foot = Sh.emp in let siz = Term.mul num len in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) in let loc = Term.var reg in let siz = Term.rename sub siz in let cnt = Term.splat Term.zero in let+ seg = Fresh.seg loc ~bas:loc ~len:siz ~siz ~cnt in let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in {foot; sub; ms; post} let size_of_ptr = Term.integer (Z.of_int Llair.Typ.(size_of ptr)) let size_of_siz = Term.integer (Z.of_int Llair.Typ.(size_of siz)) (* { p-[_;_)->⟨W,_⟩ } * posix_memalign r p s * { r=ENOMEM * (p-[_;_)->⟨W,_⟩)Θ * ∨ ∃α',q. r=0 * (p-[_;_)->⟨W,q⟩ * q-[q;s)->⟨s,α'⟩)Θ } * where W = sizeof void* *) let posix_memalign_spec reg ptr siz = let* pseg = Fresh.seg ptr ~siz:size_of_ptr in let foot = Sh.seg pseg in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Var.Set.union foot.us (Term.fv siz)) in let* q = Fresh.var "q" in let pseg' = {pseg with cnt= q} in let+ qseg = Fresh.seg q ~bas:q ~len:siz ~siz in let eok = Term.zero in let enomem = Term.integer (Z.of_int 12) in let post = Sh.or_ (Sh.and_ (Formula.eq (Term.var reg) enomem) (Sh.rename sub foot)) (Sh.and_ (Formula.eq (Term.var reg) eok) (Sh.rename sub (Sh.star (Sh.seg pseg') (Sh.seg qseg)))) in {foot; sub; ms; post} (* { p=0 ∨ p-[p;m)->⟨m,α⟩ } * realloc r p s * { (r=0 * (pΘ=0 ∨ pΘ-[pΘ;m)->⟨m,α⟩)) * ∨ ∃α',α'' . r-[r;sΘ)->⟨sΘ,α'⟩ * * (m≤sΘ ? ⟨sΘ,α'⟩=⟨m,α⟩^⟨sΘ-m,α''⟩ : ⟨m,α⟩=⟨sΘ,α'⟩^⟨m-sΘ,α''⟩) } *) let realloc_spec reg ptr siz = let* len = Fresh.var "m" in let* pseg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in let foot = Sh.or_ (null_eq ptr) (Sh.seg pseg) in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:(Var.Set.union foot.us (Term.fv siz)) in let loc = Term.var reg in let siz = Term.rename sub siz in let* rseg = Fresh.seg loc ~bas:loc ~len:siz ~siz in let a0 = pseg.cnt in let a1 = rseg.cnt in let+ a2 = Fresh.var "a" in let post = Sh.or_ (Sh.and_ (Formula.eq0 loc) (Sh.rename sub foot)) (Sh.and_ (Formula.cond ~cnd:(Formula.le len siz) ~pos:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|]) ~neg:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|])) (Sh.seg rseg)) in {foot; sub; ms; post} (* { s≠0 * p-[p;m)->⟨m,α⟩ } * rallocx r p s * { (r=0 * pΘ-[pΘ;m)->⟨m,α⟩) * ∨ ∃α',α'' . r-[r;sΘ)->⟨sΘ,α'⟩ * * (m≤sΘ ? ⟨sΘ,α'⟩=⟨m,α⟩^⟨sΘ-m,α''⟩ : ⟨m,α⟩=⟨sΘ,α'⟩^⟨m-sΘ,α''⟩) } *) let rallocx_spec reg ptr siz = let* len = Fresh.var "m" in let* pseg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in let pheap = Sh.seg pseg in let foot = Sh.and_ (Formula.dq0 siz) pheap in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in let loc = Term.var reg in let siz = Term.rename sub siz in let* rseg = Fresh.seg loc ~bas:loc ~len:siz ~siz in let a0 = pseg.cnt in let a1 = rseg.cnt in let+ a2 = Fresh.var "a" in let post = Sh.or_ (Sh.and_ (Formula.eq0 loc) (Sh.rename sub pheap)) (Sh.and_ (Formula.cond ~cnd:(Formula.le len siz) ~pos:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|]) ~neg:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|])) (Sh.seg rseg)) in {foot; sub; ms; post} (* { s≠0 * p-[p;m)->⟨m,α⟩ } * xallocx r p s e * { ∃α',α'' . sΘ≤r≤(s+e)Θ * pΘ-[pΘ;r)->⟨r,α'⟩ * * (m≤r ? ⟨r,α'⟩=⟨m,α⟩^⟨r-m,α''⟩ : ⟨m,α⟩=⟨r,α'⟩^⟨m-r,α''⟩) } *) let xallocx_spec reg ptr siz ext = let* len = Fresh.var "m" in let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in let foot = Sh.and_ (Formula.dq0 siz) (Sh.seg seg) in let* sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:Var.Set.(union foot.us (union (Term.fv siz) (Term.fv ext))) in let reg = Term.var reg in let ptr = Term.rename sub ptr in let siz = Term.rename sub siz in let ext = Term.rename sub ext in let* seg' = Fresh.seg ptr ~bas:ptr ~len:reg ~siz:reg in let a0 = seg.cnt in let a1 = seg'.cnt in let+ a2 = Fresh.var "a" in let post = Sh.and_ (Formula.and_ (Formula.cond ~cnd:(Formula.le len siz) ~pos:(eq_concat (siz, a1) [|(len, a0); (Term.sub siz len, a2)|]) ~neg:(eq_concat (len, a0) [|(siz, a1); (Term.sub len siz, a2)|])) (Formula.and_ (Formula.le siz reg) (Formula.le reg (Term.add siz ext)))) (Sh.seg seg') in {foot; sub; ms; post} (* { p-[p;m)->⟨m,α⟩ } * sallocx r p * { r=m * (p-[p;m)->⟨m,α⟩)Θ } *) let sallocx_spec reg ptr = let* len = Fresh.var "m" in let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in let foot = Sh.seg seg in let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in let post = Sh.and_ (Formula.eq (Term.var reg) len) (Sh.rename sub foot) in {foot; sub; ms; post} (* { p-[p;m)->⟨m,α⟩ } * malloc_usable_size r p * { m≤r * (p-[p;m)->⟨m,α⟩)Θ } *) let malloc_usable_size_spec reg ptr = let* len = Fresh.var "m" in let* seg = Fresh.seg ptr ~bas:ptr ~len ~siz:len in let foot = Sh.seg seg in let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in let post = Sh.and_ (Formula.le len (Term.var reg)) (Sh.rename sub foot) in {foot; sub; ms; post} (* { s≠0 } * r = nallocx s * { r=0 ∨ r=sΘ } *) let nallocx_spec reg siz = let foot = Sh.pure (Formula.dq0 siz) in let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in let loc = Term.var reg in let siz = Term.rename sub siz in let post = Sh.or_ (null_eq loc) (Sh.pure (Formula.eq loc siz)) in {foot; sub; ms; post} let size_of_int_mul = Term.mulq (Q.of_int Llair.Typ.(size_of siz)) (* { r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨W,m⟩ * w=0 * n=0 } * mallctl (_, r, i, w, n) * { ∃α'. r-[_;_)->⟨m,α'⟩ * i-[_;_)->⟨W,m⟩ } * where W = sizeof size_t *) let mallctl_read_spec r i w n = let* iseg = Fresh.seg i ~siz:size_of_siz in let* rseg = Fresh.seg r ~siz:iseg.cnt in let+ a = Fresh.var "a" in let foot = Sh.and_ (Formula.eq0 w) (Sh.and_ (Formula.eq0 n) (Sh.star (Sh.seg iseg) (Sh.seg rseg))) in let rseg' = {rseg with cnt= a} in let post = Sh.star (Sh.seg rseg') (Sh.seg iseg) in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨_,m⟩ * w=0 * n=0 } * mallctlbymib p l r i w n * { ∃α'. p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,α'⟩ * i-[_;_)->⟨_,m⟩ } * where W = sizeof int *) let mallctlbymib_read_spec p l r i w n = let wl = size_of_int_mul l in let* pseg = Fresh.seg p ~siz:wl in let* iseg = Fresh.seg i in let m = iseg.cnt in let* rseg = Fresh.seg r ~siz:m in let const = Sh.star (Sh.seg pseg) (Sh.seg iseg) in let+ a = Fresh.var "a" in let foot = Sh.and_ (Formula.eq0 w) (Sh.and_ (Formula.eq0 n) (Sh.star const (Sh.seg rseg))) in let rseg' = {rseg with cnt= a} in let post = Sh.star (Sh.seg rseg') const in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { r=0 * i=0 * w-[_;_)->⟨n,_⟩ } * mallctl (_, r, i, w, n) * { w-[_;_)->⟨n,_⟩ } *) let mallctl_write_spec r i w n = let+ seg = Fresh.seg w ~siz:n in let post = Sh.seg seg in let foot = Sh.and_ (Formula.eq0 r) (Sh.and_ (Formula.eq0 i) post) in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { p-[_;_)->⟨W×l,_⟩ * r=0 * i=0 * w-[_;_)->⟨n,_⟩ } * mallctl (_, r, i, w, n) * { p-[_;_)->⟨W×l,_⟩ * w-[_;_)->⟨n,_⟩ } * where W = sizeof int *) let mallctlbymib_write_spec p l r i w n = let wl = size_of_int_mul l in let* pseg = Fresh.seg p ~siz:wl in let+ wseg = Fresh.seg w ~siz:n in let post = Sh.star (Sh.seg pseg) (Sh.seg wseg) in let foot = Sh.and_ (Formula.eq0 r) (Sh.and_ (Formula.eq0 i) post) in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} let mallctl_specs r i w n = [mallctl_read_spec r i w n; mallctl_write_spec r i w n] let mallctlbymib_specs p j r i w n = [mallctlbymib_read_spec p j r i w n; mallctlbymib_write_spec p j r i w n] (* { p-[_;_)->⟨W×n,α⟩ * o-[_;_)->⟨_,n⟩ } * mallctlnametomib p o * { ∃α'. * p-[_;_)->⟨W×n,α'⟩ * o-[_;_)->⟨_,n⟩ } * where W = sizeof int * * Note: post is too strong, more accurate would be: * { ∃α',α²,α³,n'. ⟨W×n,α⟩=⟨W×n',α³⟩^⟨W×(n-n'),α²⟩ * * p-[_;_)->⟨W×n',α'⟩ * p+W×n'-[_;_)->⟨W×(n-n'),α²⟩ * o-[_;_)->⟨_,n'⟩ } *) let mallctlnametomib_spec p o = let* oseg = Fresh.seg o in let n = oseg.cnt in let wn = size_of_int_mul n in let* pseg = Fresh.seg p ~siz:wn in let+ a = Fresh.var "a" in let foot = Sh.star (Sh.seg oseg) (Sh.seg pseg) in let pseg' = {pseg with cnt= a} in let post = Sh.star (Sh.seg pseg') (Sh.seg oseg) in {foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* * cstring - see e.g. http://www.cplusplus.com/reference/cstring/ *) (* { p-[b;m)->⟨l,α⟩ } * r = strlen p * { r=(b+m-p-1)Θ * (p-[b;m)->⟨l,α⟩)Θ } *) let strlen_spec reg ptr = let* seg = Fresh.seg ptr in let foot = Sh.seg seg in let+ sub, ms = Fresh.assign ~ws:(Var.Set.of_ reg) ~rs:foot.us in let {Sh.loc= p; bas= b; len= m; _} = seg in let ret = Term.sub (Term.sub (Term.add b m) p) Term.one in let post = Sh.and_ (Formula.eq (Term.var reg) (Term.rename sub ret)) (Sh.rename sub foot) in {foot; sub; ms; post} (* * Symbolic Execution *) open Option.Import let check_preserve_us (q0 : Sh.t) (q1 : Sh.t) = let gain_us = Var.Set.diff q1.us q0.us in let lose_us = Var.Set.diff q0.us q1.us in (Var.Set.is_empty gain_us || fail "gain us: %a" Var.Set.pp gain_us ()) && (Var.Set.is_empty lose_us || fail "lose us: %a" Var.Set.pp lose_us ()) (* execute a command with given explicitly-quantified spec from explicitly-quantified pre *) let exec_spec_ (xs, pre) (gs, {foot; sub; ms; post}) = ([%Trace.call fun {pf} -> pf "@[%a@]@ @[<2>%a@,@[{%a %a}@;<1 -1>%a--@ {%a }@]@]" Sh.pp pre (Sh.pp_us ~pre:"@<2>∀ " ()) gs Sh.pp foot (fun fs sub -> if not (Var.Subst.is_empty sub) then Format.fprintf fs "∧ %a" Var.Subst.pp sub ) sub (fun fs ms -> if not (Var.Set.is_empty ms) then Format.fprintf fs "%a := " Var.Set.pp ms ) ms Sh.pp post ; (* gs contains all vars in spec not in pre.us *) assert ( let vs = Var.Set.(diff (diff foot.us gs) pre.us) in Var.Set.is_empty vs || fail "unbound foot: {%a}" Var.Set.pp vs () ) ; assert ( let vs = Var.Set.(diff (diff ms gs) pre.us) in Var.Set.is_empty vs || fail "unbound modif: {%a}" Var.Set.pp vs () ) ; assert ( let vs = Var.Set.(diff (diff (Var.Subst.domain sub) gs) pre.us) in Var.Set.is_empty vs || fail "unbound write: {%a}" Var.Set.pp vs () ) ; assert ( let vs = Var.Set.(diff (diff (Var.Subst.range sub) gs) pre.us) in Var.Set.is_empty vs || fail "unbound ghost: {%a}" Var.Set.pp vs () ) ; assert ( let vs = Var.Set.(diff (diff post.us gs) pre.us) in Var.Set.is_empty vs || fail "unbound post: {%a}" Var.Set.pp vs () )] ; let+ frame = Solver.infer_frame pre gs foot in Sh.exists (Var.Set.union xs gs) (Sh.star post (Sh.exists ms (Sh.rename sub frame)))) |> [%Trace.retn fun {pf} r -> pf "%a" (Option.pp "%a" Sh.pp) r ; assert (Option.for_all ~f:(check_preserve_us (Sh.exists xs pre)) r)] (* execute a command with given spec from pre *) let exec_spec pre specm = let xs, pre = Sh.bind_exists pre ~wrt:Var.Set.empty in exec_spec_ (xs, pre) (gen_spec pre.us specm) (* execute a multiple-spec command, where the disjunction of the specs preconditions are known to be tautologous *) let exec_specs pre = let xs, pre = Sh.bind_exists pre ~wrt:Var.Set.empty in let rec exec_specs_ (xs, pre) = function | specm :: specs -> let gs, spec = gen_spec pre.Sh.us specm in let pure = Sh.pure (Sh.pure_approx spec.foot) in let pre_pure = Sh.star (Sh.exists (Var.Set.inter gs pure.us) pure) pre in let* post = exec_spec_ (xs, pre_pure) (gs, spec) in let+ posts = exec_specs_ (xs, pre) specs in Sh.or_ post posts | [] -> Some (Sh.false_ Var.Set.empty) in exec_specs_ (xs, pre) let exec_specs pre specs = [%Trace.call fun _ -> ()] ; exec_specs pre specs |> [%Trace.retn fun _ r -> assert (Option.for_all ~f:(check_preserve_us pre) r)] (* * Exposed interface *) let assume pre cnd = let post = Sh.and_ cnd pre in if Sh.is_unsat post then None else Some post let kill pre reg = let ms = Var.Set.of_ reg in Sh.extend_us ms (Sh.exists ms pre) let move pre reg_exps = exec_spec pre (move_spec reg_exps) |> function Some post -> post | _ -> fail "Exec.move failed" () let load pre ~reg ~ptr ~len = exec_spec pre (load_spec reg ptr len) let store pre ~ptr ~exp ~len = exec_spec pre (store_spec ptr exp len) let alloc pre ~reg ~num ~len = exec_spec pre (alloc_spec reg num len) let free pre ~ptr = exec_spec pre (free_spec ptr) let nondet pre = function Some reg -> kill pre reg | None -> pre let abort _ = None let intrinsic : Sh.t -> Var.t option -> Llair.Intrinsic.t -> Term.t iarray -> Sh.t option = fun pre areturn intrinsic actuals -> match (areturn, intrinsic, IArray.to_array actuals) with (* * llvm intrinsics *) | None, `memset, [|dst; byt; len; _isvolatile|] -> exec_spec pre (memset_spec dst byt len) | None, `memcpy, [|dst; src; len; _isvolatile|] -> exec_specs pre (memcpy_specs dst src len) | None, `memmove, [|dst; src; len; _isvolatile|] -> exec_specs pre (memmov_specs dst src len) (* * cstdlib - memory management *) (* void* malloc(size_t size) *) | Some reg, `malloc, [|size|] (* void* aligned_alloc(size_t alignment, size_t size) *) |Some reg, `aligned_alloc, [|_; size|] -> exec_spec pre (malloc_spec reg size) (* void* calloc(size_t number, size_t size) *) | Some reg, `calloc, [|number; size|] -> exec_spec pre (calloc_spec reg number size) (* int posix_memalign(void** ptr, size_t alignment, size_t size) *) | Some reg, `posix_memalign, [|ptr; _; size|] -> exec_spec pre (posix_memalign_spec reg ptr size) (* void* realloc(void* ptr, size_t size) *) | Some reg, `realloc, [|ptr; size|] -> exec_spec pre (realloc_spec reg ptr size) (* * jemalloc - non-standard API *) (* void* mallocx(size_t size, int flags) *) | Some reg, `mallocx, [|size; _|] -> exec_spec pre (mallocx_spec reg size) (* void* rallocx(void* ptr, size_t size, int flags) *) | Some reg, `rallocx, [|ptr; size; _|] -> exec_spec pre (rallocx_spec reg ptr size) (* size_t xallocx(void* ptr, size_t size, size_t extra, int flags) *) | Some reg, `xallocx, [|ptr; size; extra; _|] -> exec_spec pre (xallocx_spec reg ptr size extra) (* size_t sallocx(void* ptr, int flags) *) | Some reg, `sallocx, [|ptr; _|] -> exec_spec pre (sallocx_spec reg ptr) (* void dallocx(void* ptr, int flags) *) | None, `dallocx, [|ptr; _|] (* void sdallocx(void* ptr, size_t size, int flags) *) |None, `sdallocx, [|ptr; _; _|] -> exec_spec pre (dallocx_spec ptr) (* size_t nallocx(size_t size, int flags) *) | Some reg, `nallocx, [|size; _|] -> exec_spec pre (nallocx_spec reg size) (* size_t malloc_usable_size(void* ptr) *) | Some reg, `malloc_usable_size, [|ptr|] -> exec_spec pre (malloc_usable_size_spec reg ptr) (* int mallctl(const char* name, void* oldp, size_t* oldlenp, void* newp, size_t newlen) *) | Some _, `mallctl, [|_; oldp; oldlenp; newp; newlen|] -> exec_specs pre (mallctl_specs oldp oldlenp newp newlen) (* int mallctlnametomib(const char* name, size_t* mibp, size_t* miblenp) *) | Some _, `mallctlnametomib, [|_; mibp; miblenp|] -> exec_spec pre (mallctlnametomib_spec mibp miblenp) (* int mallctlbymib(const size_t* mib, size_t miblen, void* oldp, size_t* oldlenp, void* newp, size_t newlen); *) | Some _, `mallctlbymib, [|mib; miblen; oldp; oldlenp; newp; newlen|] -> exec_specs pre (mallctlbymib_specs mib miblen oldp oldlenp newp newlen) | _, `malloc_stats_print, _ -> Some pre (* * cstring *) (* size_t strlen (const char* ptr) *) | Some reg, `strlen, [|ptr|] -> exec_spec pre (strlen_spec reg ptr) (* * folly *) (* bool folly::usingJEMalloc() *) | Some _, `_ZN5folly13usingJEMallocEv, [||] -> Some pre (* * signature mismatch *) | ( _ , ( `memset | `memcpy | `memmove | `malloc | `aligned_alloc | `calloc | `posix_memalign | `realloc | `mallocx | `rallocx | `xallocx | `sallocx | `dallocx | `sdallocx | `nallocx | `malloc_usable_size | `mallctl | `mallctlnametomib | `mallctlbymib | `strlen | `_ZN5folly13usingJEMallocEv ) , _ ) -> fail "%aintrinsic %a%a;" (Option.pp "%a := " Var.pp) areturn Llair.Intrinsic.pp intrinsic (IArray.pp "@ " Term.pp) actuals ()