(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Qset - Set with (signed) rational multiplicity for each element *) open Base type ('elt, 'cmp) t type ('elt, 'cmp) comparator = (module Comparator.S with type t = 'elt and type comparator_witness = 'cmp) module M (Elt : sig type t type comparator_witness end) : sig type nonrec t = (Elt.t, Elt.comparator_witness) t end module type Sexp_of_m = sig type t [@@deriving sexp_of] end module type M_of_sexp = sig type t [@@deriving of_sexp] include Comparator.S with type t := t end module type Compare_m = sig end module type Hash_fold_m = Hasher.S val sexp_of_m__t : (module Sexp_of_m with type t = 'elt) -> ('elt, 'cmp) t -> Sexp.t val m__t_of_sexp : (module M_of_sexp with type t = 'elt and type comparator_witness = 'cmp) -> Sexp.t -> ('elt, 'cmp) t val compare_m__t : (module Compare_m) -> ('elt, 'cmp) t -> ('elt, 'cmp) t -> int val equal_m__t : (module Compare_m) -> ('elt, 'cmp) t -> ('elt, 'cmp) t -> bool val hash_fold_m__t : (module Hash_fold_m with type t = 'elt) -> Hash.state -> ('elt, _) t -> Hash.state val hash_m__t : (module Hash_fold_m with type t = 'elt) -> ('elt, _) t -> Hash.hash_value val empty : ('elt, 'cmp) comparator -> ('elt, 'cmp) t (** The empty multiset over the provided order. *) val add : ('a, 'c) t -> 'a -> Q.t -> ('a, 'c) t (** Add to multiplicity of single element. [O(log n)] *) val remove : ('a, 'c) t -> 'a -> ('a, 'c) t (** Set the multiplicity of an element to zero. [O(log n)] *) val union : ('a, 'c) t -> ('a, 'c) t -> ('a, 'c) t (** Sum multiplicities pointwise. [O(n + m)] *) val length : _ t -> int (** Number of elements with non-zero multiplicity. [O(1)]. *) val count : ('a, _) t -> 'a -> Q.t (** Multiplicity of an element. [O(log n)]. *) val count_and_remove : ('a, 'c) t -> 'a -> (Q.t * ('a, 'c) t) option (** Multiplicity of an element, and remove it. [O(log n)]. *) val map : ('a, 'c) t -> f:('a -> Q.t -> 'a * Q.t) -> ('a, 'c) t (** Map over the elements in ascending order. Preserves physical equality if [f] does. *) val map_counts : ('a, 'c) t -> f:('a -> Q.t -> Q.t) -> ('a, 'c) t (** Map over the multiplicities of the elements in ascending order. *) val fold : ('a, _) t -> f:('a -> Q.t -> 's -> 's) -> init:'s -> 's (** Fold over the elements in ascending order. *) val fold_map : ('a, 'c) t -> f:('a -> Q.t -> 's -> 'a * Q.t * 's) -> init:'s -> ('a, 'c) t * 's (** Folding map over the elements in ascending order. Preserves physical equality if [f] does. *) val for_all : ('a, _) t -> f:('a -> Q.t -> bool) -> bool (** Universal property test. [O(n)] but returns as soon as a violation is found, in ascending order. *) val iter : ('a, _) t -> f:('a -> Q.t -> unit) -> unit (** Iterate over the elements in ascending order. *) val exists : ('a, _) t -> f:('a -> Q.t -> bool) -> bool (** Search for an element satisfying a predicate. *) val min_elt : ('a, _) t -> ('a * Q.t) option (** Minimum element. *) val min_elt_exn : ('a, _) t -> 'a * Q.t (** Minimum element. *) val to_list : ('a, _) t -> ('a * Q.t) list (** Convert to a list of elements in ascending order. *)