(* * Copyright (c) 2016 - present * * Programming Research Laboratory (ROPAS) * Seoul National University, Korea * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) open! IStd open AbsLoc module F = Format module L = Logging module Dom = BufferOverrunDomain module Summary = Summary.Make (struct type summary = Dom.Summary.t let update_payload astate payload = { payload with Specs.buffer_overrun = Some astate } let read_from_payload payload = payload.Specs.buffer_overrun end) module TransferFunctions (CFG : ProcCfg.S) = struct module CFG = CFG module Domain = Dom.Mem module Sem = BufferOverrunSemantics.Make (CFG) type extras = Typ.Procname.t -> Procdesc.t option (* NOTE: heuristic *) let get_malloc_info : Exp.t -> Typ.t * Exp.t = function | Exp.BinOp (Binop.Mult, Exp.Sizeof (typ, _, _), size) | Exp.BinOp (Binop.Mult, size, Exp.Sizeof (typ, _, _)) -> (typ, size) | Exp.Sizeof (typ, _, _) -> (typ, Exp.one) | x -> (Typ.Tint Typ.IChar, x) let model_malloc : Typ.Procname.t -> (Ident.t * Typ.t) option -> (Exp.t * Typ.t) list -> CFG.node -> Dom.Mem.t -> Dom.Mem.t = fun pname ret params node mem -> match ret with | Some (id, _) -> let (typ, size) = get_malloc_info (List.hd_exn params |> fst) in let size = Sem.eval size mem (CFG.loc node) |> Dom.Val.get_itv in let v = Sem.eval_array_alloc pname node typ Itv.zero size 0 1 in Dom.Mem.add_stack (Loc.of_id id) v mem | _ -> mem let model_realloc : Typ.Procname.t -> (Ident.t * Typ.t) option -> (Exp.t * Typ.t) list -> CFG.node -> Dom.Mem.t -> Dom.Mem.t = fun pname ret params node mem -> model_malloc pname ret (List.tl_exn params) node mem let model_natual_itv : (Ident.t * Typ.t) option -> Dom.Mem.t -> Dom.Mem.t = fun ret mem -> match ret with | Some (id, _) -> Dom.Mem.add_stack (Loc.of_id id) Dom.Val.nat_itv mem | _ -> mem let model_unknown_itv : (Ident.t * Typ.t) option -> Dom.Mem.t -> Dom.Mem.t = fun ret mem -> match ret with Some (id, _) -> Dom.Mem.add_stack (Loc.of_id id) Dom.Val.top_itv mem | None -> mem let model_infer_print : (Exp.t * Typ.t) list -> Dom.Mem.t -> Location.t -> Dom.Mem.t = fun params mem loc -> match params with | (e, _) :: _ -> (* TODO: only print when debug mode? *) F.fprintf F.err_formatter "@[=== Infer Print === at %a@," Location.pp loc; Dom.Val.pp F.err_formatter (Sem.eval e mem loc); F.fprintf F.err_formatter "@]"; mem | _ -> mem let handle_unknown_call : Typ.Procname.t -> (Ident.t * Typ.t) option -> Typ.Procname.t -> (Exp.t * Typ.t) list -> CFG.node -> Dom.Mem.t -> Location.t -> Dom.Mem.t = fun pname ret callee_pname params node mem loc -> match Typ.Procname.get_method callee_pname with | "malloc" | "__new_array" -> model_malloc pname ret params node mem | "realloc" -> model_realloc pname ret params node mem | "strlen" | "fgetc" -> model_natual_itv ret mem | "infer_print" -> model_infer_print params mem loc | _ -> model_unknown_itv ret mem let rec declare_array : Typ.Procname.t -> CFG.node -> Loc.t -> Typ.t -> IntLit.t -> inst_num:int -> dimension:int -> Dom.Mem.astate -> Dom.Mem.astate = fun pname node loc typ len ~inst_num ~dimension mem -> let size = IntLit.to_int len |> Itv.of_int in let arr = Sem.eval_array_alloc pname node typ Itv.zero size inst_num dimension in let mem = if Int.equal dimension 1 then Dom.Mem.add_stack loc arr mem else Dom.Mem.add_heap loc arr mem in let loc = Loc.of_allocsite (Sem.get_allocsite pname node inst_num dimension) in match typ with | Typ.Tarray (typ, Some len) -> declare_array pname node loc typ len ~inst_num ~dimension:(dimension + 1) mem | _ -> mem let declare_symbolic_array : Typ.Procname.t -> Tenv.t -> CFG.node -> Loc.t -> Typ.t -> inst_num:int -> sym_num:int -> dimension:int -> Dom.Mem.astate -> Dom.Mem.astate * int = fun pname tenv node loc typ ~inst_num ~sym_num ~dimension mem -> let offset = Itv.make_sym pname sym_num in let size = Itv.make_sym pname (sym_num + 2) in let arr = Sem.eval_array_alloc pname node typ offset size inst_num dimension in let elem_val = Dom.Val.make_sym pname (sym_num + 4) in let arr_loc = arr |> Dom.Val.get_array_blk |> ArrayBlk.get_pow_loc in let mem = mem |> Dom.Mem.add_heap loc arr |> Dom.Mem.strong_update_heap arr_loc elem_val in let decl_fld (mem, sym_num) (fn, typ, _) = let loc = mem |> Dom.Mem.find_heap loc |> Dom.Val.get_all_locs |> PowLoc.choose in let field = Loc.append_field loc fn in match typ with | Typ.Tint _ | Typ.Tfloat _ -> let v = Dom.Val.make_sym pname sym_num in (Dom.Mem.add_heap field v mem, sym_num + 2) | Typ.Tptr (typ, _) -> let offset = Itv.make_sym pname sym_num in let size = Itv.make_sym pname (sym_num + 2) in let v = Sem.eval_array_alloc pname node typ offset size inst_num dimension in (Dom.Mem.add_heap field v mem, sym_num + 4) | _ -> (mem, sym_num) in match typ with | Typ.Tstruct typename -> (match Tenv.lookup tenv typename with | Some str -> List.fold ~f:decl_fld ~init:(mem, sym_num + 6) str.Typ.Struct.fields | _ -> (mem, sym_num + 6)) | _ -> (mem, sym_num + 6) let declare_symbolic_parameter : Procdesc.t -> Tenv.t -> CFG.node -> int -> Dom.Mem.t -> Dom.Mem.t = fun pdesc tenv node inst_num mem -> let pname = Procdesc.get_proc_name pdesc in let add_formal (mem, inst_num, sym_num) (pvar, typ) = match typ with | Typ.Tint _ -> let v = Dom.Val.make_sym pname sym_num in let mem = Dom.Mem.add_heap (Loc.of_pvar pvar) v mem in (mem, inst_num + 1, sym_num + 2) | Typ.Tptr (typ, _) -> let (mem, sym_num) = declare_symbolic_array pname tenv node (Loc.of_pvar pvar) typ ~inst_num ~sym_num ~dimension:1 mem in (mem, inst_num + 1, sym_num) | _ -> (mem, inst_num, sym_num) (* TODO: add other cases if necessary *) in List.fold ~f:add_formal ~init:(mem, inst_num, 0) (Sem.get_formals pdesc) |> fst3 let instantiate_ret : Tenv.t -> Procdesc.t option -> Typ.Procname.t -> (Exp.t * Typ.t) list -> Dom.Mem.t -> Dom.Summary.t -> Location.t -> Dom.Val.astate = fun tenv callee_pdesc callee_pname params caller_mem summary loc -> let callee_entry_mem = Dom.Summary.get_input summary in let callee_exit_mem = Dom.Summary.get_output summary in match callee_pdesc with | Some pdesc -> let subst_map = Sem.get_subst_map tenv pdesc params caller_mem callee_entry_mem loc in let ret_loc = Loc.of_pvar (Pvar.get_ret_pvar callee_pname) in let ret_val = Dom.Mem.find_heap ret_loc callee_exit_mem in Dom.Val.subst ret_val subst_map |> Dom.Val.normalize (* normalize bottom *) | _ -> Dom.Val.bot let print_debug_info : Sil.instr -> Dom.Mem.t -> Dom.Mem.t -> unit = fun instr pre post -> if Config.bo_debug >= 2 then begin F.fprintf F.err_formatter "@.@.================================@."; F.fprintf F.err_formatter "@[Pre-state : @,"; Dom.Mem.pp F.err_formatter pre; F.fprintf F.err_formatter "@]@.@."; Sil.pp_instr Pp.text F.err_formatter instr; F.fprintf F.err_formatter "@.@."; F.fprintf F.err_formatter "@[Post-state : @,"; Dom.Mem.pp F.err_formatter post; F.fprintf F.err_formatter "@]@."; F.fprintf F.err_formatter "================================@.@." end let exec_instr : Dom.Mem.t -> extras ProcData.t -> CFG.node -> Sil.instr -> Dom.Mem.astate = fun mem { pdesc; tenv; extras } node instr -> let pname = Procdesc.get_proc_name pdesc in let try_decl_arr (mem, inst_num) (pvar, typ) = match typ with | Typ.Tarray (typ, Some len) -> let loc = Loc.of_var (Var.of_pvar pvar) in let mem = declare_array pname node loc typ len ~inst_num ~dimension:1 mem in (mem, inst_num + 1) | _ -> (mem, inst_num) in let output_mem = match instr with | Load (id, exp, _, loc) -> let locs = Sem.eval exp mem loc |> Dom.Val.get_all_locs in let v = Dom.Mem.find_heap_set locs mem in Dom.Mem.add_stack (Loc.of_var (Var.of_id id)) v mem |> Dom.Mem.load_alias id exp | Store (exp1, _, exp2, loc) -> let locs = Sem.eval exp1 mem loc |> Dom.Val.get_all_locs in Dom.Mem.update_mem locs (Sem.eval exp2 mem loc) mem |> Dom.Mem.store_alias exp1 exp2 | Prune (exp, loc, _, _) -> Sem.prune exp loc mem | Call (ret, Const (Cfun callee_pname), params, loc, _) -> (match Summary.read_summary pdesc callee_pname with | Some summary -> let callee = extras callee_pname in let ret_val = instantiate_ret tenv callee callee_pname params mem summary loc in (match ret with | Some (id, _) -> Dom.Mem.add_stack (Loc.of_var (Var.of_id id)) ret_val mem | _ -> mem) | None -> handle_unknown_call pname ret callee_pname params node mem loc) | Declare_locals (locals, _) -> (* array allocation in stack e.g., int arr[10] *) let (mem, inst_num) = List.fold ~f:try_decl_arr ~init:(mem, 1) locals in declare_symbolic_parameter pdesc tenv node inst_num mem | Call _ | Remove_temps _ | Abstract _ | Nullify _ -> mem in print_debug_info instr mem output_mem; output_mem end module Analyzer = AbstractInterpreter.Make (ProcCfg.Normal) (TransferFunctions) module Interprocedural = AbstractInterpreter.Interprocedural (Summary) module CFG = Analyzer.TransferFunctions.CFG module Sem = BufferOverrunSemantics.Make (CFG) module Report = struct type extras = Typ.Procname.t -> Procdesc.t option let add_condition : Typ.Procname.t -> CFG.node -> Exp.t -> Location.t -> Dom.Mem.astate -> Dom.ConditionSet.t -> Dom.ConditionSet.t = fun pname node exp loc mem cond_set -> let array_access = match exp with | Exp.Var _ -> let arr = Sem.eval exp mem loc |> Dom.Val.get_array_blk in Some (arr, Itv.zero, true) | Exp.Lindex (e1, e2) | Exp.BinOp (Binop.PlusA, e1, e2) -> let arr = Sem.eval e1 mem loc |> Dom.Val.get_array_blk in let idx = Sem.eval e2 mem loc |> Dom.Val.get_itv in Some (arr, idx, true) | Exp.BinOp (Binop.MinusA, e1, e2) -> let arr = Sem.eval e1 mem loc |> Dom.Val.get_array_blk in let idx = Sem.eval e2 mem loc |> Dom.Val.get_itv in Some (arr, idx, false) | _ -> None in match array_access with | Some (arr, idx, is_plus) -> let site = Sem.get_allocsite pname node 0 0 in let size = ArrayBlk.sizeof arr in let offset = ArrayBlk.offsetof arr in let idx = (if is_plus then Itv.plus else Itv.minus) offset idx in (if Config.bo_debug >= 2 then (F.fprintf F.err_formatter "@[Add condition :@,"; F.fprintf F.err_formatter "array: %a@," ArrayBlk.pp arr; F.fprintf F.err_formatter " idx: %a@," Itv.pp idx; F.fprintf F.err_formatter "@]@.")); if size <> Itv.bot && idx <> Itv.bot then Dom.ConditionSet.add_bo_safety pname loc site ~size ~idx cond_set else cond_set | None -> cond_set let instantiate_cond : Tenv.t -> Typ.Procname.t -> Procdesc.t option -> (Exp.t * Typ.t) list -> Dom.Mem.t -> Summary.summary -> Location.t -> Dom.ConditionSet.t = fun tenv caller_pname callee_pdesc params caller_mem summary loc -> let callee_entry_mem = Dom.Summary.get_input summary in let callee_cond = Dom.Summary.get_cond_set summary in match callee_pdesc with | Some pdesc -> let subst_map = Sem.get_subst_map tenv pdesc params caller_mem callee_entry_mem loc in let pname = Procdesc.get_proc_name pdesc in Dom.ConditionSet.subst callee_cond subst_map caller_pname pname loc | _ -> callee_cond let print_debug_info : Sil.instr -> Dom.Mem.t -> Dom.ConditionSet.t -> unit = fun instr pre cond_set -> if Config.bo_debug >= 2 then (F.fprintf F.err_formatter "@.@.================================@."; F.fprintf F.err_formatter "@[Pre-state : @,"; Dom.Mem.pp F.err_formatter pre; F.fprintf F.err_formatter "@]@.@."; Sil.pp_instr Pp.text F.err_formatter instr; F.fprintf F.err_formatter "@[@.@."; Dom.ConditionSet.pp F.err_formatter cond_set; F.fprintf F.err_formatter "@]@."; F.fprintf F.err_formatter "================================@.@.") let collect_instr : extras ProcData.t -> CFG.node -> Dom.ConditionSet.t * Dom.Mem.t -> Sil.instr -> Dom.ConditionSet.t * Dom.Mem.t = fun ({ pdesc; tenv; extras } as pdata) node (cond_set, mem) instr -> let pname = Procdesc.get_proc_name pdesc in let cond_set = match instr with | Sil.Load (_, exp, _, loc) | Sil.Store (exp, _, _, loc) -> add_condition pname node exp loc mem cond_set | Sil.Call (_, Const (Cfun callee_pname), params, loc, _) -> (match Summary.read_summary pdesc callee_pname with | Some summary -> let callee = extras callee_pname in instantiate_cond tenv pname callee params mem summary loc |> Dom.ConditionSet.rm_invalid |> Dom.ConditionSet.join cond_set | _ -> cond_set) | _ -> cond_set in let mem = Analyzer.TransferFunctions.exec_instr mem pdata node instr in print_debug_info instr mem cond_set; (cond_set, mem) let collect_instrs : extras ProcData.t -> CFG.node -> Sil.instr list -> Dom.Mem.t -> Dom.ConditionSet.t -> Dom.ConditionSet.t = fun pdata node instrs mem cond_set -> List.fold ~f:(collect_instr pdata node) ~init:(cond_set, mem) instrs |> fst let collect_node : extras ProcData.t -> Analyzer.invariant_map -> Dom.ConditionSet.t -> CFG.node -> Dom.ConditionSet.t = fun pdata inv_map cond_set node -> let instrs = CFG.instr_ids node |> List.map ~f:fst in match Analyzer.extract_pre (CFG.id node) inv_map with | Some mem -> collect_instrs pdata node instrs mem cond_set | _ -> cond_set let collect : extras ProcData.t -> Analyzer.invariant_map -> Dom.ConditionSet.t = fun ({ pdesc } as pdata) inv_map -> let add_node1 acc node = collect_node pdata inv_map acc node in Procdesc.fold_nodes add_node1 Dom.ConditionSet.empty pdesc let report_error : Procdesc.t -> Dom.ConditionSet.t -> unit = fun pdesc conds -> let pname = Procdesc.get_proc_name pdesc in let report1 cond = let alarm = Dom.Condition.check cond in let (caller_pname, loc) = match Dom.Condition.get_trace cond with | Dom.Condition.Inter (caller_pname, _, loc) -> (caller_pname, loc) | Dom.Condition.Intra pname -> (pname, Dom.Condition.get_location cond) in match alarm with | None -> () | Some bucket when Typ.Procname.equal pname caller_pname -> let description = Dom.Condition.to_string cond in let error_desc = Localise.desc_buffer_overrun bucket description in let exn = Exceptions.Checkers (Localise.to_string Localise.buffer_overrun, error_desc) in let trace = [Errlog.make_trace_element 0 loc description []] in Reporting.log_error pname ~loc ~ltr:trace exn | _ -> () in Dom.ConditionSet.iter report1 conds end let compute_post : Analyzer.TransferFunctions.extras ProcData.t -> Summary.summary option = fun { pdesc; tenv; extras = get_pdesc } -> let cfg = CFG.from_pdesc pdesc in let pdata = ProcData.make pdesc tenv get_pdesc in let pname = Procdesc.get_proc_name pdesc in let inv_map = Analyzer.exec_pdesc ~initial:Dom.Mem.bot pdata in let entry_mem = let entry_id = CFG.id (CFG.start_node cfg) in Analyzer.extract_post entry_id inv_map in let exit_mem = let exit_id = CFG.id (CFG.exit_node cfg) in Analyzer.extract_post exit_id inv_map in let cond_set = Report.collect pdata inv_map in Report.report_error pdesc cond_set; match entry_mem, exit_mem with | Some entry_mem, Some exit_mem -> Summary.write_summary pname (entry_mem, exit_mem, cond_set); Some (entry_mem, exit_mem, cond_set) | _ -> None let print_summary : Typ.Procname.t -> Dom.Summary.t -> unit = fun proc_name s -> F.fprintf F.err_formatter "@.@[Summary of %a :@," Typ.Procname.pp proc_name; Dom.Summary.pp_summary F.err_formatter s; F.fprintf F.err_formatter "@]@." let checker : Callbacks.proc_callback_args -> unit = fun ({ proc_name } as callback) -> let make_extras _ = callback.get_proc_desc in let post = Interprocedural.compute_and_store_post ~compute_post ~make_extras callback in match post with | Some s when Config.bo_debug >= 1 -> print_summary proc_name s | _ -> ()