(* * Copyright (c) 2016-present, Programming Research Laboratory (ROPAS) * Seoul National University, Korea * Copyright (c) 2017-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) open! IStd open AbsLoc open! AbstractDomain.Types module F = Format module L = Logging module OndemandEnv = BufferOverrunOndemandEnv module Relation = BufferOverrunDomainRelation module SPath = Symb.SymbolPath module Trace = BufferOverrunTrace module TraceSet = Trace.Set module LoopHeadLoc = Location type eval_sym_trace = { eval_sym: Bounds.Bound.eval_sym ; trace_of_sym: Symb.Symbol.t -> Trace.Set.t ; eval_locpath: PowLoc.eval_locpath } module ItvThresholds = AbstractDomain.FiniteSet (struct include Z let pp = pp_print end) module Val = struct type t = { itv: Itv.t ; itv_thresholds: ItvThresholds.t ; sym: Relation.Sym.t ; powloc: PowLoc.t ; arrayblk: ArrayBlk.t ; offset_sym: Relation.Sym.t ; size_sym: Relation.Sym.t ; traces: TraceSet.t ; represents_multiple_values: bool } let bot : t = { itv= Itv.bot ; itv_thresholds= ItvThresholds.empty ; sym= Relation.Sym.bot ; powloc= PowLoc.bot ; arrayblk= ArrayBlk.bot ; offset_sym= Relation.Sym.bot ; size_sym= Relation.Sym.bot ; traces= TraceSet.empty ; represents_multiple_values= false } let pp fmt x = let itv_thresholds_pp fmt itv_thresholds = if Config.bo_debug >= 3 && not (ItvThresholds.is_empty itv_thresholds) then F.fprintf fmt " (thresholds:%a)" ItvThresholds.pp itv_thresholds in let relation_sym_pp fmt sym = if Option.is_some Config.bo_relational_domain then F.fprintf fmt ", %a" Relation.Sym.pp sym in let trace_pp fmt traces = if Config.bo_debug >= 1 then F.fprintf fmt ", %a" TraceSet.pp traces in let represents_multiple_values_str = if x.represents_multiple_values then "M" else "" in F.fprintf fmt "%s(%a%a%a, %a, %a%a%a%a)" represents_multiple_values_str Itv.pp x.itv itv_thresholds_pp x.itv_thresholds relation_sym_pp x.sym PowLoc.pp x.powloc ArrayBlk.pp x.arrayblk relation_sym_pp x.offset_sym relation_sym_pp x.size_sym trace_pp x.traces let sets_represents_multiple_values : represents_multiple_values:bool -> t -> t = fun ~represents_multiple_values x -> {x with represents_multiple_values} let unknown_from : callee_pname:_ -> location:_ -> t = fun ~callee_pname ~location -> let traces = Trace.(Set.singleton_final location (UnknownFrom callee_pname)) in { itv= Itv.top ; itv_thresholds= ItvThresholds.empty ; sym= Relation.Sym.top ; powloc= PowLoc.unknown ; arrayblk= ArrayBlk.unknown ; offset_sym= Relation.Sym.top ; size_sym= Relation.Sym.top ; traces ; represents_multiple_values= false } let ( <= ) ~lhs ~rhs = if phys_equal lhs rhs then true else Itv.( <= ) ~lhs:lhs.itv ~rhs:rhs.itv && ItvThresholds.( <= ) ~lhs:lhs.itv_thresholds ~rhs:rhs.itv_thresholds && Relation.Sym.( <= ) ~lhs:lhs.sym ~rhs:rhs.sym && PowLoc.( <= ) ~lhs:lhs.powloc ~rhs:rhs.powloc && ArrayBlk.( <= ) ~lhs:lhs.arrayblk ~rhs:rhs.arrayblk && Relation.Sym.( <= ) ~lhs:lhs.offset_sym ~rhs:rhs.offset_sym && Relation.Sym.( <= ) ~lhs:lhs.size_sym ~rhs:rhs.size_sym && Bool.( <= ) lhs.represents_multiple_values rhs.represents_multiple_values let widen ~prev ~next ~num_iters = if phys_equal prev next then prev else let itv_thresholds = ItvThresholds.join prev.itv_thresholds next.itv_thresholds in { itv= Itv.widen_thresholds ~thresholds:(ItvThresholds.elements itv_thresholds) ~prev:prev.itv ~next:next.itv ~num_iters ; itv_thresholds ; sym= Relation.Sym.widen ~prev:prev.sym ~next:next.sym ~num_iters ; powloc= PowLoc.widen ~prev:prev.powloc ~next:next.powloc ~num_iters ; arrayblk= ArrayBlk.widen ~prev:prev.arrayblk ~next:next.arrayblk ~num_iters ; offset_sym= Relation.Sym.widen ~prev:prev.offset_sym ~next:next.offset_sym ~num_iters ; size_sym= Relation.Sym.widen ~prev:prev.size_sym ~next:next.size_sym ~num_iters ; traces= TraceSet.join prev.traces next.traces ; represents_multiple_values= prev.represents_multiple_values || next.represents_multiple_values } let join : t -> t -> t = fun x y -> if phys_equal x y then x else { itv= Itv.join x.itv y.itv ; itv_thresholds= ItvThresholds.join x.itv_thresholds y.itv_thresholds ; sym= Relation.Sym.join x.sym y.sym ; powloc= PowLoc.join x.powloc y.powloc ; arrayblk= ArrayBlk.join x.arrayblk y.arrayblk ; offset_sym= Relation.Sym.join x.offset_sym y.offset_sym ; size_sym= Relation.Sym.join x.size_sym y.size_sym ; traces= TraceSet.join x.traces y.traces ; represents_multiple_values= x.represents_multiple_values || y.represents_multiple_values } let get_itv : t -> Itv.t = fun x -> x.itv let get_sym : t -> Relation.Sym.t = fun x -> x.sym let get_sym_var : t -> Relation.Var.t option = fun x -> Relation.Sym.get_var x.sym let get_pow_loc : t -> PowLoc.t = fun x -> x.powloc let get_array_blk : t -> ArrayBlk.t = fun x -> x.arrayblk let get_array_locs : t -> PowLoc.t = fun x -> ArrayBlk.get_pow_loc x.arrayblk let get_all_locs : t -> PowLoc.t = fun x -> PowLoc.join x.powloc (get_array_locs x) let get_offset_sym : t -> Relation.Sym.t = fun x -> x.offset_sym let get_size_sym : t -> Relation.Sym.t = fun x -> x.size_sym let get_traces : t -> TraceSet.t = fun x -> x.traces let of_itv ?(traces = TraceSet.empty) itv = {bot with itv; traces} let of_int n = of_itv (Itv.of_int n) let of_big_int n = of_itv (Itv.of_big_int n) let of_int_lit n = of_itv (Itv.of_int_lit n) let of_loc ?(traces = TraceSet.empty) x = {bot with powloc= PowLoc.singleton x; traces} let of_pow_loc ~traces powloc = {bot with powloc; traces} let of_c_array_alloc : Allocsite.t -> stride:int option -> offset:Itv.t -> size:Itv.t -> traces:TraceSet.t -> t = fun allocsite ~stride ~offset ~size ~traces -> let stride = Option.value_map stride ~default:Itv.nat ~f:Itv.of_int in { bot with arrayblk= ArrayBlk.make_c allocsite ~offset ~size ~stride ; offset_sym= Relation.Sym.of_allocsite_offset allocsite ; size_sym= Relation.Sym.of_allocsite_size allocsite ; traces } let of_java_array_alloc : Allocsite.t -> length:Itv.t -> traces:TraceSet.t -> t = fun allocsite ~length ~traces -> { bot with arrayblk= ArrayBlk.make_java allocsite ~length ; size_sym= Relation.Sym.of_allocsite_size allocsite ; traces } let of_literal_string : Typ.IntegerWidths.t -> string -> t = fun integer_type_widths s -> let allocsite = Allocsite.literal_string s in let stride = Some (integer_type_widths.char_width / 8) in let offset = Itv.zero in let size = Itv.of_int (String.length s + 1) in of_c_array_alloc allocsite ~stride ~offset ~size ~traces:TraceSet.empty let deref_of_literal_string s = let max_char = String.fold s ~init:0 ~f:(fun acc c -> max acc (Char.to_int c)) in of_itv (Itv.set_lb_zero (Itv.of_int max_char)) let modify_itv : Itv.t -> t -> t = fun i x -> {x with itv= i} let unknown_bit : t -> t = fun x -> {x with itv= Itv.top; sym= Relation.Sym.top} let neg : t -> t = fun x -> {x with itv= Itv.neg x.itv; sym= Relation.Sym.top} let lnot : t -> t = fun x -> {x with itv= Itv.lnot x.itv |> Itv.of_bool; sym= Relation.Sym.top} let lift_itv : (Itv.t -> Itv.t -> Itv.t) -> ?f_trace:_ -> t -> t -> t = fun f ?f_trace x y -> let itv = f x.itv y.itv in let itv_thresholds = ItvThresholds.join x.itv_thresholds y.itv_thresholds in let traces = match f_trace with | Some f_trace -> f_trace x.traces y.traces | None -> ( match (Itv.eq itv x.itv, Itv.eq itv y.itv) with | true, false -> x.traces | false, true -> y.traces | true, true | false, false -> TraceSet.join x.traces y.traces ) in {bot with itv; itv_thresholds; traces} let lift_cmp_itv : (Itv.t -> Itv.t -> Boolean.t) -> Boolean.EqualOrder.t -> t -> t -> t = fun cmp_itv cmp_loc x y -> let b = match ( x.itv , PowLoc.is_bot x.powloc , ArrayBlk.is_bot x.arrayblk , y.itv , PowLoc.is_bot y.powloc , ArrayBlk.is_bot y.arrayblk ) with | NonBottom _, true, true, NonBottom _, true, true -> cmp_itv x.itv y.itv | Bottom, false, true, Bottom, false, true -> PowLoc.lift_cmp cmp_loc x.powloc y.powloc | Bottom, true, false, Bottom, true, false -> ArrayBlk.lift_cmp_itv cmp_itv cmp_loc x.arrayblk y.arrayblk | _ -> Boolean.Top in let itv = Itv.of_bool b in {bot with itv; traces= TraceSet.join x.traces y.traces} let plus_a = lift_itv Itv.plus let minus_a = lift_itv Itv.minus let get_iterator_itv : t -> t = fun i -> let itv = Itv.get_iterator_itv i.itv in of_itv itv ~traces:i.traces let mult = lift_itv Itv.mult let div = lift_itv Itv.div let mod_sem = lift_itv Itv.mod_sem let shiftlt = lift_itv Itv.shiftlt let shiftrt = lift_itv Itv.shiftrt let band_sem = lift_itv Itv.band_sem let lt_sem : t -> t -> t = lift_cmp_itv Itv.lt_sem Boolean.EqualOrder.strict_cmp let gt_sem : t -> t -> t = lift_cmp_itv Itv.gt_sem Boolean.EqualOrder.strict_cmp let le_sem : t -> t -> t = lift_cmp_itv Itv.le_sem Boolean.EqualOrder.loose_cmp let ge_sem : t -> t -> t = lift_cmp_itv Itv.ge_sem Boolean.EqualOrder.loose_cmp let eq_sem : t -> t -> t = lift_cmp_itv Itv.eq_sem Boolean.EqualOrder.eq let ne_sem : t -> t -> t = lift_cmp_itv Itv.ne_sem Boolean.EqualOrder.ne let land_sem : t -> t -> t = lift_cmp_itv Itv.land_sem Boolean.EqualOrder.top let lor_sem : t -> t -> t = lift_cmp_itv Itv.lor_sem Boolean.EqualOrder.top (* TODO: get rid of those cases *) let warn_against_pruning_multiple_values : t -> t = fun x -> if x.represents_multiple_values && Config.write_html then L.d_printfln_escaped ~color:Pp.Red "Pruned %a that represents multiple values" pp x ; x let lift_prune1 : (Itv.t -> Itv.t) -> t -> t = fun f x -> warn_against_pruning_multiple_values {x with itv= f x.itv} let lift_prune_length1 : (Itv.t -> Itv.t) -> t -> t = fun f x -> warn_against_pruning_multiple_values {x with arrayblk= ArrayBlk.transform_length ~f x.arrayblk} let lift_prune2 : (Itv.t -> Itv.t -> Itv.t) -> (ArrayBlk.t -> ArrayBlk.t -> ArrayBlk.t) -> t -> t -> t = fun f g x y -> let itv = f x.itv y.itv in let itv_thresholds = Option.value_map (Itv.is_const y.itv) ~default:x.itv_thresholds ~f:(fun z -> x.itv_thresholds |> ItvThresholds.add Z.(z - one) |> ItvThresholds.add z |> ItvThresholds.add Z.(z + one) ) in let arrayblk = g x.arrayblk y.arrayblk in if phys_equal itv x.itv && phys_equal itv_thresholds x.itv_thresholds && phys_equal arrayblk x.arrayblk then (* x hasn't changed, don't join traces *) x else warn_against_pruning_multiple_values {x with itv; itv_thresholds; arrayblk; traces= TraceSet.join x.traces y.traces} let prune_eq_zero : t -> t = lift_prune1 Itv.prune_eq_zero let prune_ne_zero : t -> t = lift_prune1 Itv.prune_ne_zero let prune_ge_one : t -> t = lift_prune1 Itv.prune_ge_one let prune_length_eq_zero : t -> t = lift_prune_length1 Itv.prune_eq_zero let prune_length_ge_one : t -> t = lift_prune_length1 Itv.prune_ge_one let prune_comp : Binop.t -> t -> t -> t = fun c -> lift_prune2 (Itv.prune_comp c) (ArrayBlk.prune_comp c) let is_null : t -> bool = fun x -> Itv.is_false x.itv && PowLoc.is_bot x.powloc && ArrayBlk.is_bot x.arrayblk let prune_eq : t -> t -> t = fun x y -> if is_null y then {x with itv= Itv.zero; powloc= PowLoc.bot; arrayblk= ArrayBlk.bot} else lift_prune2 Itv.prune_eq ArrayBlk.prune_eq x y let prune_ne : t -> t -> t = lift_prune2 Itv.prune_ne ArrayBlk.prune_ne let is_pointer_to_non_array x = (not (PowLoc.is_bot x.powloc)) && ArrayBlk.is_bot x.arrayblk (* In the pointer arithmetics, it returns top, if we cannot precisely follow the physical memory model, e.g., (&x + 1). *) let lift_pi : (ArrayBlk.t -> Itv.t -> ArrayBlk.t) -> t -> t -> t = fun f x y -> let traces = TraceSet.join x.traces y.traces in if is_pointer_to_non_array x then {bot with itv= Itv.top; traces} else {bot with arrayblk= f x.arrayblk y.itv; traces} let plus_pi : t -> t -> t = fun x y -> lift_pi ArrayBlk.plus_offset x y let minus_pi : t -> t -> t = fun x y -> lift_pi ArrayBlk.minus_offset x y let minus_pp : t -> t -> t = fun x y -> let itv = if is_pointer_to_non_array x && is_pointer_to_non_array y then Itv.top else ArrayBlk.diff x.arrayblk y.arrayblk in {bot with itv; traces= TraceSet.join x.traces y.traces} let get_symbols : t -> Itv.SymbolSet.t = fun x -> Itv.SymbolSet.union (Itv.get_symbols x.itv) (ArrayBlk.get_symbols x.arrayblk) let normalize : t -> t = fun x -> {x with itv= Itv.normalize x.itv; arrayblk= ArrayBlk.normalize x.arrayblk} let subst : t -> eval_sym_trace -> Location.t -> t = fun x {eval_sym; trace_of_sym; eval_locpath} location -> let symbols = get_symbols x in let traces_caller = Itv.SymbolSet.fold (fun symbol traces -> TraceSet.join (trace_of_sym symbol) traces) symbols TraceSet.empty in let traces = TraceSet.call location ~traces_caller ~traces_callee:x.traces in { x with itv= Itv.subst x.itv eval_sym ; powloc= PowLoc.subst x.powloc eval_locpath ; arrayblk= ArrayBlk.subst x.arrayblk eval_sym eval_locpath ; traces } (* normalize bottom *) |> normalize let add_assign_trace_elem location locs x = let traces = Trace.(Set.add_elem location (Assign locs)) x.traces in {x with traces} let set_array_length : Location.t -> length:t -> t -> t = fun location ~length v -> { v with arrayblk= ArrayBlk.set_length length.itv v.arrayblk ; traces= Trace.(Set.add_elem location ArrayDeclaration) length.traces } let transform_array_length : Location.t -> f:(Itv.t -> Itv.t) -> t -> t = fun location ~f v -> { v with arrayblk= ArrayBlk.transform_length ~f v.arrayblk ; traces= Trace.(Set.add_elem location (through ~risky_fun:None)) v.traces } let set_array_offset : Location.t -> Itv.t -> t -> t = fun location offset v -> { v with arrayblk= ArrayBlk.set_offset offset v.arrayblk ; traces= Trace.(Set.add_elem location (through ~risky_fun:None)) v.traces } let set_array_stride : Z.t -> t -> t = fun new_stride v -> PhysEqual.optim1 v ~res:{v with arrayblk= ArrayBlk.set_stride new_stride v.arrayblk} let unknown_locs = of_pow_loc PowLoc.unknown ~traces:TraceSet.empty let is_mone x = Itv.is_mone (get_itv x) let of_path tenv ~may_last_field integer_type_widths location typ path = let is_java = Language.curr_language_is Java in L.d_printfln_escaped "Val.of_path %a : %a%s%s" SPath.pp_partial path (Typ.pp Pp.text) typ (if may_last_field then ", may_last_field" else "") (if is_java then ", is_java" else "") ; match typ.Typ.desc with | Tint _ | Tfloat _ | Tvoid | Tfun _ | TVar _ -> let l = Loc.of_path path in let traces = TraceSet.singleton location (Trace.Parameter l) in let unsigned = Typ.is_unsigned_int typ in of_itv ~traces (Itv.of_normal_path ~unsigned path) | Tptr (elt, _) -> if is_java || SPath.is_this path then let deref_kind = if is_java then SPath.Deref_JavaPointer else SPath.Deref_COneValuePointer in let deref_path = SPath.deref ~deref_kind path in let l = Loc.of_path deref_path in let traces = TraceSet.singleton location (Trace.Parameter l) in {bot with powloc= PowLoc.singleton l; traces} else let deref_kind = SPath.Deref_CPointer in let deref_path = SPath.deref ~deref_kind path in let l = Loc.of_path deref_path in let traces = TraceSet.singleton location (Trace.Parameter l) in let arrayblk = let allocsite = Allocsite.make_symbol deref_path in let stride = match elt.Typ.desc with | Typ.Tint ikind -> Itv.of_int (Typ.width_of_ikind integer_type_widths ikind) | _ -> Itv.nat in let offset = Itv.of_offset_path path in let size = Itv.of_length_path path in ArrayBlk.make_c allocsite ~stride ~offset ~size in {bot with arrayblk; traces} | Tstruct typename -> ( match BufferOverrunTypModels.dispatch tenv typename with | Some (CArray {deref_kind; length}) -> let deref_path = SPath.deref ~deref_kind path in let l = Loc.of_path deref_path in let traces = TraceSet.singleton location (Trace.Parameter l) in let allocsite = Allocsite.make_symbol deref_path in let offset = Itv.zero in let size = Itv.of_int_lit length in of_c_array_alloc allocsite ~stride:None ~offset ~size ~traces | Some JavaCollection -> let deref_path = SPath.deref ~deref_kind:Deref_ArrayIndex path in let l = Loc.of_path deref_path in let traces = TraceSet.singleton location (Trace.Parameter l) in let allocsite = Allocsite.make_symbol deref_path in let length = Itv.of_length_path path in of_java_array_alloc allocsite ~length ~traces | None -> let l = Loc.of_path path in let traces = TraceSet.singleton location (Trace.Parameter l) in of_loc ~traces l ) | Tarray {length; stride} -> let deref_path = SPath.deref ~deref_kind:Deref_ArrayIndex path in let l = Loc.of_path deref_path in let traces = TraceSet.singleton location (Trace.Parameter l) in let allocsite = Allocsite.make_symbol deref_path in let size = match length with | None (* IncompleteArrayType, no-size flexible array *) -> Itv.of_length_path path | Some length when may_last_field && (IntLit.iszero length || IntLit.isone length) (* 0/1-sized flexible array *) -> Itv.of_length_path path | Some length -> Itv.of_big_int (IntLit.to_big_int length) in if is_java then of_java_array_alloc allocsite ~length:size ~traces else let stride = Option.map stride ~f:(fun n -> IntLit.to_int_exn n) in let offset = Itv.zero in of_c_array_alloc allocsite ~stride ~offset ~size ~traces let on_demand : default:t -> OndemandEnv.t -> Loc.t -> t = fun ~default {tenv; typ_of_param_path; may_last_field; entry_location; integer_type_widths} l -> match Loc.is_literal_string l with | Some s -> deref_of_literal_string s | None -> ( match Loc.is_literal_string_strlen l with | Some s -> of_itv (Itv.of_int (String.length s)) | None -> ( match Loc.get_path l with | None -> L.d_printfln_escaped "Val.on_demand for %a -> no path" Loc.pp l ; default | Some path -> ( match typ_of_param_path path with | None -> L.d_printfln_escaped "Val.on_demand for %a -> no type" Loc.pp l ; default | Some typ -> L.d_printfln_escaped "Val.on_demand for %a" Loc.pp l ; let may_last_field = may_last_field path in let path = OndemandEnv.canonical_path typ_of_param_path path in of_path tenv ~may_last_field integer_type_widths entry_location typ path ) ) ) module Itv = struct let zero_255 = of_itv Itv.zero_255 let m1_255 = of_itv Itv.m1_255 let nat = of_itv Itv.nat let pos = of_itv Itv.pos let top = of_itv Itv.top let unknown_bool = of_itv Itv.unknown_bool let zero = of_itv Itv.zero end end module StackLocs = struct include AbstractDomain.FiniteSet (Loc) let bot = empty end module MemPure = struct include AbstractDomain.Map (Loc) (Val) let bot = empty let range : filter_loc:(Loc.t -> LoopHeadLoc.t option) -> t -> Polynomials.NonNegativePolynomial.t = fun ~filter_loc mem -> fold (fun loc v acc -> match filter_loc loc with | Some loop_head_loc -> v |> Val.get_itv |> Itv.range loop_head_loc |> Itv.ItvRange.to_top_lifted_polynomial |> Polynomials.NonNegativePolynomial.mult acc | None -> acc ) mem Polynomials.NonNegativePolynomial.one let join oenv astate1 astate2 = if phys_equal astate1 astate2 then astate1 else merge (fun l v1_opt v2_opt -> match (v1_opt, v2_opt) with | Some v1, Some v2 -> Some (Val.join v1 v2) | Some v1, None | None, Some v1 -> let v2 = Val.on_demand ~default:Val.bot oenv l in Some (Val.join v1 v2) | None, None -> None ) astate1 astate2 let widen oenv ~prev ~next ~num_iters = if phys_equal prev next then prev else merge (fun l v1_opt v2_opt -> match (v1_opt, v2_opt) with | Some v1, Some v2 -> Some (Val.widen ~prev:v1 ~next:v2 ~num_iters) | Some v1, None -> let v2 = Val.on_demand ~default:Val.bot oenv l in Some (Val.widen ~prev:v1 ~next:v2 ~num_iters) | None, Some v2 -> let v1 = Val.on_demand ~default:Val.bot oenv l in Some (Val.widen ~prev:v1 ~next:v2 ~num_iters) | None, None -> None ) prev next end module AliasTarget = struct type t = | Simple of Loc.t | SimplePlusA of Loc.t * IntLit.t | Empty of Loc.t | Fgets of Loc.t | Nullity of Loc.t [@@deriving compare] let equal = [%compare.equal: t] let pp fmt = function | Simple l -> Loc.pp fmt l | SimplePlusA (l, i) -> if IntLit.isnegative i then F.fprintf fmt "%a-%a" Loc.pp l IntLit.pp (IntLit.neg i) else F.fprintf fmt "%a+%a" Loc.pp l IntLit.pp i | Empty l -> F.fprintf fmt "empty(%a)" Loc.pp l | Fgets l -> F.fprintf fmt "fgets(%a)" Loc.pp l | Nullity l -> F.fprintf fmt "nullity(%a)" Loc.pp l let fgets l = Fgets l let nullity l = Nullity l let use l = function | Simple l' | SimplePlusA (l', _) | Empty l' | Fgets l' | Nullity l' -> Loc.equal l l' let loc_map x ~f = match x with | Simple l -> Option.map (f l) ~f:(fun l -> Simple l) | SimplePlusA (l, i) -> Option.map (f l) ~f:(fun l -> SimplePlusA (l, i)) | Empty l -> Option.map (f l) ~f:(fun l -> Empty l) | Fgets l -> Option.map (f l) ~f:(fun l -> Fgets l) | Nullity l -> Option.map (f l) ~f:(fun l -> Nullity l) let ( <= ) ~lhs ~rhs = equal lhs rhs let join x y = assert (equal x y) ; x let widen ~prev ~next ~num_iters:_ = join prev next end (* Relations between values of logical variables(registers) and program variables "AliasTarget.Simple relation": Since Sil distinguishes logical and program variables, we need a relation for pruning values of program variables. For example, a C statement "if(x){...}" is translated to "%r=load(x); if(%r){...}" in Sil. At the load statement, we record the alias between the values of %r and x, then we can prune not only the value of %r, but also that of x inside the if branch. "AliasTarget.Empty relation": For pruning vector.length with vector::empty() results, we adopt a specific relation between %r and v, where %r=v.empty(). So, if %r!=0, v's array length ([v.length]) is pruned by v.length=0. On the other hand, if %r==0, v's array length is pruned by v.length>=1. "AliasTarget.Nullity relation": For pruning vector.length with vector::empty() results, we adopt a specific relation between %r and i, where %r=v.empty() and i=v.length. So, if %r!=0, i is pruned by i=0. On the other hand, if %r==0, i is pruned by i>=1. This is similar to the AliasTarget.Empty relation, but is used when there is a program variable [i] for the length of the array. *) module AliasMap = struct include AbstractDomain.Map (Ident) (AliasTarget) let pp : F.formatter -> t -> unit = fun fmt x -> if not (is_empty x) then let pp_sep fmt () = F.fprintf fmt ", @," in let pp1 fmt (k, v) = F.fprintf fmt "%a=%a" Ident.pp k AliasTarget.pp v in F.pp_print_list ~pp_sep pp1 fmt (bindings x) let load : Ident.t -> AliasTarget.t -> t -> t = add let store : Loc.t -> t -> t = fun l m -> filter (fun _ y -> not (AliasTarget.use l y)) m let find : Ident.t -> t -> AliasTarget.t option = find_opt end module AliasRet = struct include AbstractDomain.Flat (AliasTarget) let pp : F.formatter -> t -> unit = fun fmt x -> F.pp_print_string fmt "ret=" ; pp fmt x end module Alias = struct type t = {map: AliasMap.t; ret: AliasRet.t} let ( <= ) ~lhs ~rhs = if phys_equal lhs rhs then true else AliasMap.( <= ) ~lhs:lhs.map ~rhs:rhs.map && AliasRet.( <= ) ~lhs:lhs.ret ~rhs:rhs.ret let join x y = if phys_equal x y then x else {map= AliasMap.join x.map y.map; ret= AliasRet.join x.ret y.ret} let widen ~prev ~next ~num_iters = if phys_equal prev next then prev else { map= AliasMap.widen ~prev:prev.map ~next:next.map ~num_iters ; ret= AliasRet.widen ~prev:prev.ret ~next:next.ret ~num_iters } let pp fmt x = F.fprintf fmt "@[{ %a%s%a }@]" AliasMap.pp x.map (if AliasMap.is_empty x.map then "" else ", ") AliasRet.pp x.ret let bot : t = {map= AliasMap.empty; ret= AliasRet.bottom} let lift_map : (AliasMap.t -> AliasMap.t) -> t -> t = fun f a -> {a with map= f a.map} let bind_map : (AliasMap.t -> 'a) -> t -> 'a = fun f a -> f a.map let find : Ident.t -> t -> AliasTarget.t option = fun x -> bind_map (AliasMap.find x) let find_ret : t -> AliasTarget.t option = fun x -> AliasRet.get x.ret let load : Ident.t -> AliasTarget.t -> t -> t = fun id loc -> lift_map (AliasMap.load id loc) let store_simple : Loc.t -> Exp.t -> t -> t = fun loc e a -> let a = lift_map (AliasMap.store loc) a in match e with | Exp.Var l when Loc.is_return loc -> let update_ret retl = {a with ret= AliasRet.v retl} in Option.value_map (find l a) ~default:a ~f:update_ret | Exp.BinOp (Binop.PlusA _, Exp.Var id, Exp.Const (Const.Cint i)) | Exp.BinOp (Binop.PlusA _, Exp.Const (Const.Cint i), Exp.Var id) -> lift_map (AliasMap.load id (AliasTarget.SimplePlusA (loc, IntLit.neg i))) a | Exp.BinOp (Binop.MinusA _, Exp.Var id, Exp.Const (Const.Cint i)) -> lift_map (AliasMap.load id (AliasTarget.SimplePlusA (loc, i))) a | _ -> a let store_empty : Val.t -> Loc.t -> t -> t = fun formal loc a -> let a = lift_map (AliasMap.store loc) a in let locs = Val.get_all_locs formal in match PowLoc.is_singleton_or_more locs with | IContainer.Singleton loc -> {a with ret= AliasRet.v (AliasTarget.nullity loc)} | _ -> a let fgets : Ident.t -> PowLoc.t -> t -> t = fun id locs a -> let a = PowLoc.fold (fun loc acc -> lift_map (AliasMap.store loc) acc) locs a in match PowLoc.is_singleton_or_more locs with | IContainer.Singleton loc -> load id (AliasTarget.fgets loc) a | _ -> a let remove_temp : Ident.t -> t -> t = fun temp -> lift_map (AliasMap.remove temp) end module CoreVal = struct type t = Val.t let compare x y = let r = Itv.compare (Val.get_itv x) (Val.get_itv y) in if r <> 0 then r else ArrayBlk.compare (Val.get_array_blk x) (Val.get_array_blk y) let pp fmt x = F.fprintf fmt "(%a, %a)" Itv.pp (Val.get_itv x) ArrayBlk.pp (Val.get_array_blk x) let is_symbolic v = let itv = Val.get_itv v in if Itv.is_bottom itv then ArrayBlk.is_symbolic (Val.get_array_blk v) else Itv.is_symbolic itv let is_empty v = Itv.is_bottom (Val.get_itv v) && ArrayBlk.is_empty (Val.get_array_blk v) end module PruningExp = struct type t = Unknown | Binop of {bop: Binop.t; lhs: CoreVal.t; rhs: CoreVal.t} [@@deriving compare] let ( <= ) ~lhs ~rhs = match (lhs, rhs) with | _, Unknown -> true | Unknown, _ -> false | Binop {bop= bop1; lhs= lhs1; rhs= rhs1}, Binop {bop= bop2; lhs= lhs2; rhs= rhs2} -> Binop.equal bop1 bop2 && Val.( <= ) ~lhs:lhs1 ~rhs:lhs2 && Val.( <= ) ~lhs:rhs1 ~rhs:rhs2 let join x y = match (x, y) with | Binop {bop= bop1; lhs= lhs1; rhs= rhs1}, Binop {bop= bop2; lhs= lhs2; rhs= rhs2} when Binop.equal bop1 bop2 -> Binop {bop= bop1; lhs= Val.join lhs1 lhs2; rhs= Val.join rhs1 rhs2} | _, _ -> Unknown let widen ~prev ~next ~num_iters = match (prev, next) with | Binop {bop= bop1; lhs= lhs1; rhs= rhs1}, Binop {bop= bop2; lhs= lhs2; rhs= rhs2} when Binop.equal bop1 bop2 -> Binop { bop= bop1 ; lhs= Val.widen ~prev:lhs1 ~next:lhs2 ~num_iters ; rhs= Val.widen ~prev:rhs1 ~next:rhs2 ~num_iters } | _, _ -> Unknown let pp fmt x = match x with | Unknown -> F.pp_print_string fmt "Unknown" | Binop {bop; lhs; rhs} -> F.fprintf fmt "(%a %s %a)" CoreVal.pp lhs (Binop.str Pp.text bop) CoreVal.pp rhs let make bop ~lhs ~rhs = Binop {bop; lhs; rhs} let is_unknown = function Unknown -> true | Binop _ -> false let is_symbolic = function | Unknown -> false | Binop {lhs; rhs} -> CoreVal.is_symbolic lhs || CoreVal.is_symbolic rhs let is_empty = let le_false v = Itv.( <= ) ~lhs:(Val.get_itv v) ~rhs:Itv.zero in function | Unknown -> false | Binop {bop= Lt; lhs; rhs} -> le_false (Val.lt_sem lhs rhs) | Binop {bop= Gt; lhs; rhs} -> le_false (Val.gt_sem lhs rhs) | Binop {bop= Le; lhs; rhs} -> le_false (Val.le_sem lhs rhs) | Binop {bop= Ge; lhs; rhs} -> le_false (Val.ge_sem lhs rhs) | Binop {bop= Eq; lhs; rhs} -> le_false (Val.eq_sem lhs rhs) | Binop {bop= Ne; lhs; rhs} -> le_false (Val.ne_sem lhs rhs) | Binop _ -> assert false let subst x eval_sym_trace location = match x with | Unknown -> Unknown | Binop {bop; lhs; rhs} -> Binop { bop ; lhs= Val.subst lhs eval_sym_trace location ; rhs= Val.subst rhs eval_sym_trace location } end module PrunedVal = struct type t = {v: CoreVal.t; pruning_exp: PruningExp.t} [@@deriving compare] let ( <= ) ~lhs ~rhs = Val.( <= ) ~lhs:lhs.v ~rhs:rhs.v && PruningExp.( <= ) ~lhs:lhs.pruning_exp ~rhs:rhs.pruning_exp let join x y = {v= Val.join x.v y.v; pruning_exp= PruningExp.join x.pruning_exp y.pruning_exp} let widen ~prev ~next ~num_iters = { v= Val.widen ~prev:prev.v ~next:next.v ~num_iters ; pruning_exp= PruningExp.widen ~prev:prev.pruning_exp ~next:next.pruning_exp ~num_iters } let pp fmt x = CoreVal.pp fmt x.v ; if not (PruningExp.is_unknown x.pruning_exp) then F.fprintf fmt " by %a" PruningExp.pp x.pruning_exp let make v pruning_exp = {v; pruning_exp} let get_val x = x.v let subst {v; pruning_exp} eval_sym_trace location = { v= Val.subst v eval_sym_trace location ; pruning_exp= PruningExp.subst pruning_exp eval_sym_trace location } let is_symbolic {v; pruning_exp} = CoreVal.is_symbolic v || PruningExp.is_symbolic pruning_exp let is_empty {v; pruning_exp} = CoreVal.is_empty v || PruningExp.is_empty pruning_exp end (* [PrunePairs] is a map from abstract locations to abstract values that represents pruned results in the latest pruning. It uses [InvertedMap] because more pruning means smaller abstract states. *) module PrunePairs = struct include AbstractDomain.InvertedMap (Loc) (PrunedVal) let forget locs x = filter (fun l _ -> not (PowLoc.mem l locs)) x end module LatestPrune = struct (* Latest p: The pruned pairs 'p' has pruning information (which abstract locations are updated by which abstract values) in the latest pruning. TrueBranch (x, p): After a pruning, the variable 'x' is assigned by 1. There is no other memory updates after the latest pruning. FalseBranch (x, p): After a pruning, the variable 'x' is assigned by 0. There is no other memory updates after the latest pruning. V (x, ptrue, pfalse): After two non-sequential prunings ('ptrue' and 'pfalse'), the variable 'x' is assigned by 1 and 0, respectively. There is no other memory updates after the latest prunings. Top: No information about the latest pruning. *) type t = | Latest of PrunePairs.t | TrueBranch of Pvar.t * PrunePairs.t | FalseBranch of Pvar.t * PrunePairs.t | V of Pvar.t * PrunePairs.t * PrunePairs.t | Top let pvar_pp = Pvar.pp Pp.text let pp fmt = function | Top -> () | Latest p -> F.fprintf fmt "LatestPrune: latest %a" PrunePairs.pp p | TrueBranch (v, p) -> F.fprintf fmt "LatestPrune: true(%a) %a" pvar_pp v PrunePairs.pp p | FalseBranch (v, p) -> F.fprintf fmt "LatestPrune: false(%a) %a" pvar_pp v PrunePairs.pp p | V (v, p1, p2) -> F.fprintf fmt "LatestPrune: v(%a) %a / %a" pvar_pp v PrunePairs.pp p1 PrunePairs.pp p2 let ( <= ) ~lhs ~rhs = if phys_equal lhs rhs then true else match (lhs, rhs) with | _, Top -> true | Top, _ -> false | Latest p1, Latest p2 -> PrunePairs.( <= ) ~lhs:p1 ~rhs:p2 | TrueBranch (x1, p1), TrueBranch (x2, p2) | FalseBranch (x1, p1), FalseBranch (x2, p2) | TrueBranch (x1, p1), V (x2, p2, _) | FalseBranch (x1, p1), V (x2, _, p2) -> Pvar.equal x1 x2 && PrunePairs.( <= ) ~lhs:p1 ~rhs:p2 | V (x1, ptrue1, pfalse1), V (x2, ptrue2, pfalse2) -> Pvar.equal x1 x2 && PrunePairs.( <= ) ~lhs:ptrue1 ~rhs:ptrue2 && PrunePairs.( <= ) ~lhs:pfalse1 ~rhs:pfalse2 | _, _ -> false let join x y = match (x, y) with | _, _ when ( <= ) ~lhs:x ~rhs:y -> y | _, _ when ( <= ) ~lhs:y ~rhs:x -> x | Latest p1, Latest p2 -> Latest (PrunePairs.join p1 p2) | FalseBranch (x1, p1), FalseBranch (x2, p2) when Pvar.equal x1 x2 -> FalseBranch (x1, PrunePairs.join p1 p2) | TrueBranch (x1, p1), TrueBranch (x2, p2) when Pvar.equal x1 x2 -> TrueBranch (x1, PrunePairs.join p1 p2) | FalseBranch (x', pfalse), TrueBranch (y', ptrue) | TrueBranch (x', ptrue), FalseBranch (y', pfalse) when Pvar.equal x' y' -> V (x', ptrue, pfalse) | TrueBranch (x1, ptrue1), V (x2, ptrue2, pfalse) | V (x2, ptrue2, pfalse), TrueBranch (x1, ptrue1) when Pvar.equal x1 x2 -> V (x1, PrunePairs.join ptrue1 ptrue2, pfalse) | FalseBranch (x1, pfalse1), V (x2, ptrue, pfalse2) | V (x2, ptrue, pfalse2), FalseBranch (x1, pfalse1) when Pvar.equal x1 x2 -> V (x1, ptrue, PrunePairs.join pfalse1 pfalse2) | V (x1, ptrue1, pfalse1), V (x2, ptrue2, pfalse2) when Pvar.equal x1 x2 -> V (x1, PrunePairs.join ptrue1 ptrue2, PrunePairs.join pfalse1 pfalse2) | _, _ -> Top let widen ~prev ~next ~num_iters:_ = join prev next let top = Top let forget locs = let is_mem_locs x = PowLoc.mem (Loc.of_pvar x) locs in function | Latest p -> Latest (PrunePairs.forget locs p) | TrueBranch (x, p) -> if is_mem_locs x then Top else TrueBranch (x, PrunePairs.forget locs p) | FalseBranch (x, p) -> if is_mem_locs x then Top else FalseBranch (x, PrunePairs.forget locs p) | V (x, ptrue, pfalse) -> if is_mem_locs x then Top else V (x, PrunePairs.forget locs ptrue, PrunePairs.forget locs pfalse) | Top -> Top end module Reachability = struct module M = PrettyPrintable.MakePPSet (PrunedVal) type t = M.t let equal = M.equal let pp = M.pp (* It keeps only symbolic pruned values, because non-symbolic ones are useless to see the reachability. *) let add v x = if PrunedVal.is_symbolic v then M.add v x else x let of_latest_prune latest_prune = let of_prune_pairs p = PrunePairs.fold (fun _ v acc -> add v acc) p M.empty in match latest_prune with | LatestPrune.Latest p | LatestPrune.TrueBranch (_, p) | LatestPrune.FalseBranch (_, p) -> of_prune_pairs p | LatestPrune.V (_, ptrue, pfalse) -> M.inter (of_prune_pairs ptrue) (of_prune_pairs pfalse) | LatestPrune.Top -> M.empty let make latest_prune = of_latest_prune latest_prune let add_latest_prune latest_prune x = M.union x (of_latest_prune latest_prune) let subst x eval_sym_trace location = let exception Unreachable in let subst1 x acc = let v = PrunedVal.subst x eval_sym_trace location in if PrunedVal.is_empty v then raise Unreachable else add v acc in match M.fold subst1 x M.empty with x -> `Reachable x | exception Unreachable -> `Unreachable end module MemReach = struct type 'has_oenv t0 = { stack_locs: StackLocs.t ; mem_pure: MemPure.t ; alias: Alias.t ; latest_prune: LatestPrune.t ; relation: Relation.t ; oenv: ('has_oenv, OndemandEnv.t) GOption.t } type no_oenv_t = GOption.none t0 type t = GOption.some t0 let init : OndemandEnv.t -> t = fun oenv -> { stack_locs= StackLocs.bot ; mem_pure= MemPure.bot ; alias= Alias.bot ; latest_prune= LatestPrune.top ; relation= Relation.empty ; oenv= GOption.GSome oenv } let ( <= ) ~lhs ~rhs = if phys_equal lhs rhs then true else StackLocs.( <= ) ~lhs:lhs.stack_locs ~rhs:rhs.stack_locs && MemPure.( <= ) ~lhs:lhs.mem_pure ~rhs:rhs.mem_pure && Alias.( <= ) ~lhs:lhs.alias ~rhs:rhs.alias && LatestPrune.( <= ) ~lhs:lhs.latest_prune ~rhs:rhs.latest_prune && Relation.( <= ) ~lhs:lhs.relation ~rhs:rhs.relation let widen ~prev ~next ~num_iters = if phys_equal prev next then prev else ( assert (phys_equal prev.oenv next.oenv) ; let oenv = GOption.value prev.oenv in { stack_locs= StackLocs.widen ~prev:prev.stack_locs ~next:next.stack_locs ~num_iters ; mem_pure= MemPure.widen oenv ~prev:prev.mem_pure ~next:next.mem_pure ~num_iters ; alias= Alias.widen ~prev:prev.alias ~next:next.alias ~num_iters ; latest_prune= LatestPrune.widen ~prev:prev.latest_prune ~next:next.latest_prune ~num_iters ; relation= Relation.widen ~prev:prev.relation ~next:next.relation ~num_iters ; oenv= prev.oenv } ) let join : t -> t -> t = fun x y -> assert (phys_equal x.oenv y.oenv) ; let oenv = GOption.value x.oenv in { stack_locs= StackLocs.join x.stack_locs y.stack_locs ; mem_pure= MemPure.join oenv x.mem_pure y.mem_pure ; alias= Alias.join x.alias y.alias ; latest_prune= LatestPrune.join x.latest_prune y.latest_prune ; relation= Relation.join x.relation y.relation ; oenv= x.oenv } let pp : F.formatter -> _ t0 -> unit = fun fmt x -> F.fprintf fmt "StackLocs:@;%a@;MemPure:@;%a@;Alias:@;%a@;%a" StackLocs.pp x.stack_locs MemPure.pp x.mem_pure Alias.pp x.alias LatestPrune.pp x.latest_prune ; if Option.is_some Config.bo_relational_domain then F.fprintf fmt "@;Relation:@;%a" Relation.pp x.relation let unset_oenv : t -> no_oenv_t = function x -> {x with oenv= GOption.GNone} let is_stack_loc : Loc.t -> _ t0 -> bool = fun l m -> StackLocs.mem l m.stack_locs let find_opt : Loc.t -> _ t0 -> Val.t option = fun l m -> MemPure.find_opt l m.mem_pure let find_stack : Loc.t -> _ t0 -> Val.t = fun l m -> Option.value (find_opt l m) ~default:Val.bot let find_heap_default : default:Val.t -> Loc.t -> _ t0 -> Val.t = fun ~default l m -> IOption.value_default_f (find_opt l m) ~f:(fun () -> GOption.value_map m.oenv ~default ~f:(fun oenv -> Val.on_demand ~default oenv l) ) let find_heap : Loc.t -> _ t0 -> Val.t = fun l m -> find_heap_default ~default:Val.Itv.top l m let find : Loc.t -> _ t0 -> Val.t = fun l m -> if is_stack_loc l m then find_stack l m else find_heap l m let find_set : PowLoc.t -> _ t0 -> Val.t = fun locs m -> let find_join loc acc = Val.join acc (find loc m) in PowLoc.fold find_join locs Val.bot let find_alias : Ident.t -> _ t0 -> AliasTarget.t option = fun k m -> Alias.find k m.alias let find_simple_alias : Ident.t -> _ t0 -> (Loc.t * IntLit.t option) option = fun k m -> match Alias.find k m.alias with | Some (AliasTarget.Simple l) -> Some (l, None) | Some (AliasTarget.SimplePlusA (l, i)) -> Some (l, Some i) | Some (AliasTarget.Empty _ | AliasTarget.Fgets _ | AliasTarget.Nullity _) | None -> None let find_ret_alias : _ t0 -> AliasTarget.t option = fun m -> Alias.find_ret m.alias let load_alias : Ident.t -> AliasTarget.t -> t -> t = fun id loc m -> {m with alias= Alias.load id loc m.alias} let store_simple_alias : Loc.t -> Exp.t -> t -> t = fun loc e m -> {m with alias= Alias.store_simple loc e m.alias} let store_empty_alias : Val.t -> Loc.t -> t -> t = fun formal loc m -> {m with alias= Alias.store_empty formal loc m.alias} let fgets_alias : Ident.t -> PowLoc.t -> t -> t = fun id locs m -> {m with alias= Alias.fgets id locs m.alias} let add_stack_loc : Loc.t -> t -> t = fun k m -> {m with stack_locs= StackLocs.add k m.stack_locs} let add_stack : Loc.t -> Val.t -> t -> t = fun k v m -> {m with stack_locs= StackLocs.add k m.stack_locs; mem_pure= MemPure.add k v m.mem_pure} let replace_stack : Loc.t -> Val.t -> t -> t = fun k v m -> {m with mem_pure= MemPure.add k v m.mem_pure} let add_heap : Loc.t -> Val.t -> t -> t = fun x v m -> let v = let sym = if Itv.is_bottom (Val.get_itv v) then Relation.Sym.bot else Relation.Sym.of_loc x in let offset_sym, size_sym = if ArrayBlk.is_bot (Val.get_array_blk v) then (Relation.Sym.bot, Relation.Sym.bot) else (Relation.Sym.of_loc_offset x, Relation.Sym.of_loc_size x) in {v with Val.sym; Val.offset_sym; Val.size_sym} in {m with mem_pure= MemPure.add x v m.mem_pure} let add_unknown_from : Ident.t -> callee_pname:Typ.Procname.t option -> location:Location.t -> t -> t = fun id ~callee_pname ~location m -> let val_unknown = Val.unknown_from ~callee_pname ~location in add_stack (Loc.of_id id) val_unknown m |> add_heap Loc.unknown val_unknown let strong_update : PowLoc.t -> Val.t -> t -> t = fun locs v m -> let strong_update1 l m = if is_stack_loc l m then replace_stack l v m else add_heap l v m in PowLoc.fold strong_update1 locs m let transformi_mem : f:(Loc.t -> Val.t -> Val.t) -> PowLoc.t -> t -> t = fun ~f locs m -> let transform_mem1 l m = let add, find = if is_stack_loc l m then (replace_stack, find_stack) else (add_heap, find_heap_default ~default:Val.bot) in add l (f l (find l m)) m in PowLoc.fold transform_mem1 locs m let transform_mem : f:(Val.t -> Val.t) -> PowLoc.t -> t -> t = fun ~f -> transformi_mem ~f:(fun _ v -> f v) let weak_update locs v m = transformi_mem ~f:(fun l v' -> if Loc.represents_multiple_values l then Val.join v' v else v) locs m let update_mem : PowLoc.t -> Val.t -> t -> t = fun ploc v s -> if can_strong_update ploc then strong_update ploc v s else ( L.d_printfln_escaped "Weak update for %a <- %a" PowLoc.pp ploc Val.pp v ; weak_update ploc v s ) let remove_temp : Ident.t -> t -> t = fun temp m -> let l = Loc.of_id temp in { m with stack_locs= StackLocs.remove l m.stack_locs ; mem_pure= MemPure.remove l m.mem_pure ; alias= Alias.remove_temp temp m.alias } let remove_temps : Ident.t list -> t -> t = fun temps m -> List.fold temps ~init:m ~f:(fun acc temp -> remove_temp temp acc) let set_prune_pairs : PrunePairs.t -> t -> t = fun prune_pairs m -> {m with latest_prune= LatestPrune.Latest prune_pairs} let apply_latest_prune : Exp.t -> t -> t = let apply1 l v acc = update_mem (PowLoc.singleton l) (PrunedVal.get_val v) acc in fun e m -> match (m.latest_prune, e) with | LatestPrune.V (x, prunes, _), Exp.Var r | LatestPrune.V (x, _, prunes), Exp.UnOp (Unop.LNot, Exp.Var r, _) -> ( match find_simple_alias r m with | Some (Loc.Var (Var.ProgramVar y), None) when Pvar.equal x y -> PrunePairs.fold apply1 prunes m | _ -> m ) | _ -> m let update_latest_prune : updated_locs:PowLoc.t -> Exp.t -> Exp.t -> t -> t = fun ~updated_locs e1 e2 m -> match (e1, e2, m.latest_prune) with | Lvar x, Const (Const.Cint i), LatestPrune.Latest p -> if IntLit.isone i then {m with latest_prune= LatestPrune.TrueBranch (x, p)} else if IntLit.iszero i then {m with latest_prune= LatestPrune.FalseBranch (x, p)} else {m with latest_prune= LatestPrune.forget updated_locs m.latest_prune} | _, _, _ -> {m with latest_prune= LatestPrune.forget updated_locs m.latest_prune} let get_latest_prune : t -> LatestPrune.t = fun {latest_prune} -> latest_prune let get_reachable_locs_from : (Pvar.t * Typ.t) list -> PowLoc.t -> _ t0 -> PowLoc.t = let add_reachable1 ~root loc v acc = if Loc.equal root loc then PowLoc.union acc (Val.get_all_locs v) else if Loc.is_field_of ~loc:root ~field_loc:loc then PowLoc.add loc acc else acc in let rec add_from_locs heap locs acc = PowLoc.fold (add_from_loc heap) locs acc and add_from_loc heap loc acc = if PowLoc.mem loc acc then acc else let reachable_locs = MemPure.fold (add_reachable1 ~root:loc) heap PowLoc.empty in add_from_locs heap reachable_locs (PowLoc.add loc acc) in let add_param_locs formals mem acc = let add_loc loc _ acc = if Loc.has_param_path formals loc then PowLoc.add loc acc else acc in MemPure.fold add_loc mem acc in fun formals locs m -> let locs = add_param_locs formals m.mem_pure locs in add_from_locs m.mem_pure locs PowLoc.empty let range : filter_loc:(Loc.t -> LoopHeadLoc.t option) -> t -> Polynomials.NonNegativePolynomial.t = fun ~filter_loc {mem_pure} -> MemPure.range ~filter_loc mem_pure let get_relation : t -> Relation.t = fun m -> m.relation let is_relation_unsat : t -> bool = fun m -> Relation.is_unsat m.relation let lift_relation : (Relation.t -> Relation.t) -> t -> t = fun f m -> {m with relation= f m.relation} let meet_constraints : Relation.Constraints.t -> t -> t = fun constrs -> lift_relation (Relation.meet_constraints constrs) let store_relation : PowLoc.t -> Relation.SymExp.t option * Relation.SymExp.t option * Relation.SymExp.t option -> t -> t = fun locs symexp_opts -> lift_relation (Relation.store_relation locs symexp_opts) let forget_locs : PowLoc.t -> t -> t = fun locs -> lift_relation (Relation.forget_locs locs) let init_param_relation : Loc.t -> t -> t = fun loc -> lift_relation (Relation.init_param loc) let init_array_relation : Allocsite.t -> offset_opt:Itv.t option -> size:Itv.t -> size_exp_opt:Relation.SymExp.t option -> t -> t = fun allocsite ~offset_opt ~size ~size_exp_opt -> lift_relation (Relation.init_array allocsite ~offset_opt ~size ~size_exp_opt) let instantiate_relation : Relation.SubstMap.t -> caller:t -> callee:no_oenv_t -> t = fun subst_map ~caller ~callee -> { caller with relation= Relation.instantiate subst_map ~caller:caller.relation ~callee:callee.relation } (* unsound *) let set_first_idx_of_null : Loc.t -> Val.t -> t -> t = fun loc idx m -> update_mem (PowLoc.singleton (Loc.of_c_strlen loc)) idx m (* unsound *) let unset_first_idx_of_null : Loc.t -> Val.t -> t -> t = fun loc idx m -> let old_c_strlen = find_heap (Loc.of_c_strlen loc) m in let idx_itv = Val.get_itv idx in if Boolean.is_true (Itv.lt_sem idx_itv (Val.get_itv old_c_strlen)) then m else let new_c_strlen = Val.of_itv ~traces:(Val.get_traces idx) (Itv.incr idx_itv) in set_first_idx_of_null loc new_c_strlen m end module Mem = struct include AbstractDomain.BottomLifted (MemReach) type 'has_oenv t0 = 'has_oenv MemReach.t0 AbstractDomain.Types.bottom_lifted type no_oenv_t = GOption.none t0 let bot : t = Bottom let init : OndemandEnv.t -> t = fun oenv -> NonBottom (MemReach.init oenv) let f_lift_default : default:'a -> ('h MemReach.t0 -> 'a) -> 'h t0 -> 'a = fun ~default f m -> match m with Bottom -> default | NonBottom m' -> f m' let is_stack_loc : Loc.t -> _ t0 -> bool = fun k -> f_lift_default ~default:false (MemReach.is_stack_loc k) let find : Loc.t -> _ t0 -> Val.t = fun k -> f_lift_default ~default:Val.bot (MemReach.find k) let find_stack : Loc.t -> _ t0 -> Val.t = fun k -> f_lift_default ~default:Val.bot (MemReach.find_stack k) let find_set : PowLoc.t -> _ t0 -> Val.t = fun k -> f_lift_default ~default:Val.bot (MemReach.find_set k) let find_opt : Loc.t -> _ t0 -> Val.t option = fun k -> f_lift_default ~default:None (MemReach.find_opt k) let find_alias : Ident.t -> _ t0 -> AliasTarget.t option = fun k -> f_lift_default ~default:None (MemReach.find_alias k) let find_simple_alias : Ident.t -> _ t0 -> (Loc.t * IntLit.t option) option = fun k -> f_lift_default ~default:None (MemReach.find_simple_alias k) let find_ret_alias : _ t0 -> AliasTarget.t option = fun m -> f_lift_default ~default:None MemReach.find_ret_alias m let load_alias : Ident.t -> AliasTarget.t -> t -> t = fun id loc -> map ~f:(MemReach.load_alias id loc) let load_simple_alias : Ident.t -> Loc.t -> t -> t = fun id loc -> load_alias id (AliasTarget.Simple loc) let load_empty_alias : Ident.t -> Loc.t -> t -> t = fun id loc -> load_alias id (AliasTarget.Empty loc) let store_simple_alias : Loc.t -> Exp.t -> t -> t = fun loc e -> map ~f:(MemReach.store_simple_alias loc e) let store_empty_alias : Val.t -> Loc.t -> t -> t = fun formal loc -> map ~f:(MemReach.store_empty_alias formal loc) let fgets_alias : Ident.t -> PowLoc.t -> t -> t = fun id locs -> map ~f:(MemReach.fgets_alias id locs) let add_stack_loc : Loc.t -> t -> t = fun k -> map ~f:(MemReach.add_stack_loc k) let add_stack : Loc.t -> Val.t -> t -> t = fun k v -> map ~f:(MemReach.add_stack k v) let add_heap : Loc.t -> Val.t -> t -> t = fun k v -> map ~f:(MemReach.add_heap k v) let add_unknown_from : Ident.t -> callee_pname:Typ.Procname.t -> location:Location.t -> t -> t = fun id ~callee_pname ~location -> map ~f:(MemReach.add_unknown_from id ~callee_pname:(Some callee_pname) ~location) let add_unknown : Ident.t -> location:Location.t -> t -> t = fun id ~location -> map ~f:(MemReach.add_unknown_from id ~callee_pname:None ~location) let strong_update : PowLoc.t -> Val.t -> t -> t = fun p v -> map ~f:(MemReach.strong_update p v) let get_reachable_locs_from : (Pvar.t * Typ.t) list -> PowLoc.t -> _ t0 -> PowLoc.t = fun formals locs -> f_lift_default ~default:PowLoc.empty (MemReach.get_reachable_locs_from formals locs) let update_mem : PowLoc.t -> Val.t -> t -> t = fun ploc v -> map ~f:(MemReach.update_mem ploc v) let transform_mem : f:(Val.t -> Val.t) -> PowLoc.t -> t -> t = fun ~f ploc -> map ~f:(MemReach.transform_mem ~f ploc) let remove_temps : Ident.t list -> t -> t = fun temps -> map ~f:(MemReach.remove_temps temps) let set_prune_pairs : PrunePairs.t -> t -> t = fun prune_pairs -> map ~f:(MemReach.set_prune_pairs prune_pairs) let apply_latest_prune : Exp.t -> t -> t = fun e -> map ~f:(MemReach.apply_latest_prune e) let update_latest_prune : updated_locs:PowLoc.t -> Exp.t -> Exp.t -> t -> t = fun ~updated_locs e1 e2 -> map ~f:(MemReach.update_latest_prune ~updated_locs e1 e2) let get_latest_prune : t -> LatestPrune.t = f_lift_default ~default:LatestPrune.Top MemReach.get_latest_prune let get_relation : t -> Relation.t = fun m -> f_lift_default ~default:Relation.bot MemReach.get_relation m let meet_constraints : Relation.Constraints.t -> t -> t = fun constrs -> map ~f:(MemReach.meet_constraints constrs) let is_relation_unsat m = f_lift_default ~default:true MemReach.is_relation_unsat m let store_relation : PowLoc.t -> Relation.SymExp.t option * Relation.SymExp.t option * Relation.SymExp.t option -> t -> t = fun locs symexp_opts -> map ~f:(MemReach.store_relation locs symexp_opts) let forget_locs : PowLoc.t -> t -> t = fun locs -> map ~f:(MemReach.forget_locs locs) let[@warning "-32"] init_param_relation : Loc.t -> t -> t = fun loc -> map ~f:(MemReach.init_param_relation loc) let init_array_relation : Allocsite.t -> offset_opt:Itv.t option -> size:Itv.t -> size_exp_opt:Relation.SymExp.t option -> t -> t = fun allocsite ~offset_opt ~size ~size_exp_opt -> map ~f:(MemReach.init_array_relation allocsite ~offset_opt ~size ~size_exp_opt) let instantiate_relation : Relation.SubstMap.t -> caller:t -> callee:no_oenv_t -> t = fun subst_map ~caller ~callee -> match callee with | Bottom -> caller | NonBottom callee -> map ~f:(fun caller -> MemReach.instantiate_relation subst_map ~caller ~callee) caller let unset_oenv = function Bottom -> Bottom | NonBottom m -> NonBottom (MemReach.unset_oenv m) let set_first_idx_of_null loc idx = map ~f:(MemReach.set_first_idx_of_null loc idx) let unset_first_idx_of_null loc idx = map ~f:(MemReach.unset_first_idx_of_null loc idx) let get_c_strlen locs m = let get_c_strlen' loc acc = match loc with Loc.Allocsite _ -> Val.join acc (find (Loc.of_c_strlen loc) m) | _ -> acc in PowLoc.fold get_c_strlen' locs Val.bot let pp f m = AbstractDomain.BottomLiftedUtils.pp ~pp:MemReach.pp f m end