(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (* A simple, concrete memory model where the heap is an array of bytes. This is * how llair views memory, and how we give semantics to llvm. Although LLVM's * real memory model is still a subject of research, this is mostly to do with * enabling the right collection of compiler optimisations. Since we only want to * think about LLVM semantics after optimisation, the concrete model is likely to * be sufficient. *) open HolKernel boolLib bossLib Parse; open arithmeticTheory listTheory rich_listTheory pairTheory; open logrootTheory numposrepTheory wordsTheory pred_setTheory finite_mapTheory; open settingsTheory miscTheory; new_theory "memory_model"; numLib.prefer_num (); (* Heap addresses *) Datatype: addr = A num End (* Values that fit in registers *) Datatype: reg_v = | FlatV 'a | AggV (reg_v list) End (* An interval of allocated memory. * Args: whether it's freeable, the starting address (inclusive), and the ending address * (exclusive) *) Datatype: interval = Interval bool num num End Datatype: heap = <| memory : addr |-> 'a # word8; allocations : interval set; valid_addresses : addr set|> End Definition erase_tags_def: erase_tags h = <| memory := (λ(t,b). ((), b)) o_f h.memory; allocations := h.allocations; valid_addresses := h.valid_addresses |> End (* shapes statically describe the shape of a value in a register. Flat shapes * take a given number of bytes, Array shapes are replicated a certain number of * times *) Datatype: shape = | Flat num 'a | Array shape num | Tuple (shape list) End (* Does a value have a given shape. The function argument answers the question * for flat values/shapes. * We use mutual recursion instead of list_rel to work around a HOL bug. *) Definition value_shape_def: (value_shape f (Flat n t) (FlatV x) ⇔ f n t x) ∧ (value_shape f (Array s n) (AggV vs) ⇔ every (value_shape f s) vs ∧ length vs = n) ∧ (value_shape f (Tuple ss) (AggV vs) ⇔ value_shapes f ss vs) ∧ (value_shape _ _ _ ⇔ F) ∧ (value_shapes f [] [] ⇔ T) ∧ (value_shapes f (s::ss) (v::vs) ⇔ value_shape f s v ∧ value_shapes f ss vs) ∧ (value_shapes _ _ _ ⇔ F) Termination WF_REL_TAC `measure (\x. case x of | INL (_, x, _) => shape_size (\x.0) x | INR (_, y, _) => shape1_size (\x.0) y)` End Theorem value_shapes_list_rel: ∀f ss vs. value_shapes f ss vs ⇔ list_rel (value_shape f) ss vs Proof Induct_on `ss` >> Cases_on `vs` >> rw [value_shape_def] QED Theorem value_shape_cases: ∀f s v. value_shape f s v ⇔ (∃n t x. s = Flat n t ∧ v = FlatV x ∧ f n t x) ∨ (∃s2 n vs. s = Array s2 n ∧ v = AggV vs ∧ every (value_shape f s2) vs ∧ length vs = n) ∨ (∃ss vs. s = Tuple ss ∧ v = AggV vs ∧ value_shapes f ss vs) Proof rw [] >> Cases_on `s` >> Cases_on `v` >> rw [value_shape_def] >> metis_tac [] QED Definition sizeof_def: (sizeof (Flat n t) = n) ∧ (sizeof (Array s n) = n * sizeof s) ∧ (sizeof (Tuple ss) = sum (map sizeof ss)) Termination WF_REL_TAC `measure (shape_size (\x.0))` >> rw [] >> Induct_on `ss` >> rw [definition "shape_size_def"] >> res_tac >> decide_tac End Definition interval_to_set_def: interval_to_set (Interval _ start stop) = { n | start ≤ n ∧ n < stop } End Definition interval_ok_def: interval_ok (Interval b i1 i2) valid_addresses ⇔ i1 ≤ i2 ∧ image A (interval_to_set (Interval b i1 i2)) ⊆ valid_addresses End Definition interval_freeable_def: interval_freeable (Interval b _ _) ⇔ b End Definition is_allocated_def: is_allocated b1 h ⇔ interval_ok b1 h.valid_addresses ∧ ∃b2. b2 ∈ h.allocations ∧ (interval_freeable b1 ⇔ interval_freeable b2) ∧ interval_to_set b1 ⊆ interval_to_set b2 End Definition is_free_def: is_free b1 h ⇔ interval_ok b1 h.valid_addresses ∧ ∀b2. b2 ∈ h.allocations ⇒ interval_to_set b1 ∩ interval_to_set b2 = ∅ End (* The allocations are of intervals that don't overlap *) Definition allocations_ok_def: allocations_ok h ⇔ ∀i1 i2. i1 ∈ h.allocations ∧ i2 ∈ h.allocations ⇒ interval_ok i1 h.valid_addresses ∧ interval_ok i2 h.valid_addresses ∧ (interval_to_set i1 ∩ interval_to_set i2 ≠ ∅ ⇒ i1 = i2) End (* The heap maps exactly the address in the allocations *) Definition heap_ok_def: heap_ok h ⇔ allocations_ok h ∧ ∀n. flookup h.memory (A n) ≠ None ⇔ ∃i. i ∈ h.allocations ∧ n ∈ interval_to_set i End Definition get_bytes_def: get_bytes h (Interval _ start stop) = map (λoff. case flookup h.memory (A (start + off)) of | Some w => w) (count_list (stop - start)) End Definition set_bytes_def: (set_bytes p [] n h = h) ∧ (set_bytes p (b::bs) n h = set_bytes p bs (Suc n) (h with memory := h.memory |+ (A n, (p, b)))) End (* Allocate a free chunk of memory, and write non-deterministic bytes into it *) Inductive allocate: ∀h size tag p bytes b. b = Interval T p (p + size) ∧ is_free b h ∧ length bytes = size ⇒ allocate h size tag (p, set_bytes tag bytes p <| memory := h.memory; allocations := { b } ∪ h.allocations; valid_addresses := h.valid_addresses |>) End Definition deallocate_def: deallocate addrs h = let to_remove = { Interval T n stop | A n ∈ set addrs ∧ Interval T n stop ∈ h.allocations } in <| memory := fdiff h.memory (image A (bigunion (image interval_to_set to_remove))); allocations := h.allocations DIFF to_remove; valid_addresses := h.valid_addresses |> End (* Read len bytes from the list of bytes, and convert it into a number, * little-endian encoding *) Definition le_read_num_def: le_read_num len (bs : word8 list) = if length bs < len then (l2n 256 (map w2n bs), []) else (l2n 256 (map w2n (take len bs)), drop len bs) End (* Return len bytes that are the little-endian encoding of the argument number, * assuming that it fits*) Definition le_write_num_def: le_write_num len n = let (l : word8 list) = map n2w (n2l 256 n) in take len (l ++ replicate (len - length l) 0w) End (* Read a from a list of bytes bs to build a register value described by a * shape. The function f is applied to the word read from a flat list of bytes * in little-endian order. *) Definition bytes_to_value_def: (bytes_to_value f (Flat n t) bs = (FlatV o f n t ## I) (le_read_num n bs)) ∧ (bytes_to_value f (Array s n) bs = (AggV ## I) (read_array f n s bs)) ∧ (bytes_to_value f (Tuple ts) bs = (AggV ## I) (read_str f ts bs)) ∧ (read_array f 0 s bs = ([], bs)) ∧ (read_array f (Suc n) s bs = let (v, bs) = bytes_to_value f s bs in let (rest, bs) = read_array f n s bs in (v::rest, bs)) ∧ (read_str f [] bs = ([], bs)) ∧ (read_str f (s::ss) bs = let (v, bs) = bytes_to_value f s bs in let (rest, bs) = read_str f ss bs in (v::rest, bs)) Termination WF_REL_TAC `measure (λx. case x of | INL (_, t, bs) => shape_size (\x.0) t | INR (INL (_, n, t, bs)) => n + shape_size (\x.0) t | INR (INR (_, ts, bs)) => shape1_size (\x.0) ts)` End (* Convert the given value to a list of bytes, the function gives the size, and * a machine word for a flat value *) Definition value_to_bytes_def: (value_to_bytes f (FlatV x) = let (size, word) = f x in le_write_num size word) ∧ (value_to_bytes f (AggV vs) = flat (map (value_to_bytes f) vs)) Termination WF_REL_TAC `measure (reg_v_size (\x. 0) o snd)` >> Induct >> rw [definition "reg_v_size_def"] >> TRY (first_x_assum drule) >> decide_tac End (* ----- Theorems about converting between values and byte lists ----- *) Theorem le_write_num_length: ∀l x. length (le_write_num l w) = l Proof rw [le_write_num_def] QED Theorem v2b_size_lem: (∀(f:num->'a->'b->bool) s v. (∀n t x. f n t x ⇒ fst (g x) = n) ∧ value_shape f s v ⇒ length (value_to_bytes g v) = sizeof s) ∧ (∀(f:num->'a->'b->bool) ss vs. (∀n t x. f n t x ⇒ fst (g x) = n) ∧ value_shapes f ss vs ⇒ sum (map (length o value_to_bytes g) vs) = sum (map sizeof ss)) Proof ho_match_mp_tac value_shape_ind >> rw [value_to_bytes_def, sizeof_def, value_shape_def] >- ( pairarg_tac >> simp [] >> metis_tac [FST, le_write_num_length]) >- ( simp [LENGTH_FLAT, MAP_MAP_o, combinTheory.o_DEF] >> Induct_on `vs` >> rw [ADD1] >> fs [LEFT_ADD_DISTRIB] >> metis_tac []) >- (fs [LENGTH_FLAT, ETA_THM, MAP_MAP_o, combinTheory.o_DEF] >> metis_tac []) >- metis_tac [ADD_COMM] QED Theorem v2b_size: ∀f s v g. (∀n t x. f n t x ⇒ fst (g x) = n) ∧ value_shape f s v ⇒ length (value_to_bytes g v) = sizeof s Proof metis_tac [v2b_size_lem] QED Theorem b2v_size_lem: (∀(f:num->'c ->num -> 'b) s bs. sizeof s ≤ length bs ⇒ ∃v. bytes_to_value f s bs = (v, drop (sizeof s) bs)) ∧ (∀(f:num->'c ->num -> 'b) n s bs. n * sizeof s ≤ length bs ⇒ ∃vs. read_array f n s bs = (vs, drop (n * sizeof s) bs)) ∧ (∀(f:num->'c ->num -> 'b) ss bs. sum (map sizeof ss) ≤ length bs ⇒ ∃vs. read_str f ss bs = (vs, drop (sum (map sizeof ss)) bs)) Proof ho_match_mp_tac bytes_to_value_ind >> rw [sizeof_def, bytes_to_value_def, le_read_num_def] >> fs [] >- (simp [PAIR_MAP] >> metis_tac [SND]) >- ( pairarg_tac >> rw [] >> pairarg_tac >> rw [] >> fs [ADD1] >> rw [] >> fs [DROP_DROP_T, LEFT_ADD_DISTRIB]) >- fs [DROP_DROP_T, LEFT_ADD_DISTRIB] QED Theorem b2v_size: ∀f s bs. sizeof s ≤ length bs ⇒ ∃v. bytes_to_value f s bs = (v, drop (sizeof s) bs) Proof metis_tac [b2v_size_lem] QED Theorem b2v_smaller: ∀f s bs. sizeof s ≤ length bs ⇒ length (snd (bytes_to_value f s bs)) = length bs - sizeof s Proof rw [] >> imp_res_tac b2v_size >> Cases_on `bytes_to_value f s bs` >> fs [] >> first_x_assum (qspec_then `f` mp_tac) >> rw [] QED Theorem b2v_append_lem: (∀(f:num->'c->num -> 'b) s bs. sizeof s ≤ length bs ⇒ bytes_to_value f s (bs ++ bs') = (I ## (λx. x ++ bs')) (bytes_to_value f s bs)) ∧ (∀(f:num->'c->num -> 'b) n s bs. n * sizeof s ≤ length bs ⇒ ∃vs. read_array f n s (bs ++ bs') = (I ## (λx. x ++ bs')) (read_array f n s bs)) ∧ (∀(f:num->'c-> num -> 'b) ss bs. sum (map sizeof ss) ≤ length bs ⇒ ∃vs. read_str f ss (bs ++ bs') = (I ## (λx. x ++ bs')) (read_str f ss bs)) Proof ho_match_mp_tac bytes_to_value_ind >> rw [sizeof_def, bytes_to_value_def, le_read_num_def] >> fs [TAKE_APPEND, DROP_APPEND, DECIDE ``!x y. x ≤ y ⇒ x - y = 0n``, ETA_THM] >- (simp [PAIR_MAP] >> metis_tac [SND]) >- (simp [PAIR_MAP] >> metis_tac [SND]) >- ( rpt (pairarg_tac >> simp []) >> fs [ADD1] >> BasicProvers.VAR_EQ_TAC >> fs [LEFT_ADD_DISTRIB] >> first_x_assum irule >> `sizeof s ≤ length bs` by decide_tac >> qspec_then `f` drule b2v_smaller >> disch_then (qspec_then `f` mp_tac) >> rw []) >- ( rpt (pairarg_tac >> simp []) >> fs [ADD1] >> BasicProvers.VAR_EQ_TAC >> fs [LEFT_ADD_DISTRIB] >> first_x_assum irule >> `sizeof s ≤ length bs` by decide_tac >> qspec_then `f` drule b2v_smaller >> disch_then (qspec_then `f` mp_tac) >> rw []) QED Theorem b2v_append: ∀f s bs bs'. sizeof s ≤ length bs ⇒ bytes_to_value f s (bs ++ bs') = (I ## (λx. x ++ bs')) (bytes_to_value f s bs) Proof metis_tac [b2v_append_lem] QED Theorem le_read_write: ∀size n bs. n < 256 ** size ⇒ le_read_num size (le_write_num size n ⧺ bs) = (n, bs) Proof rw [le_read_num_def, le_write_num_length] >- ( `take size (le_write_num size n ⧺ bs) = le_write_num size n` by metis_tac [le_write_num_length, TAKE_LENGTH_APPEND] >> simp [le_write_num_def, w2l_def, l2w_def] >> fs [SIMP_RULE (srw_ss()) [map_replicate] l2n_padding, TAKE_APPEND, take_replicate] >> simp [MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF, mod_n2l] >> rename1 `n2l 256 m` >> Cases_on `size = 0` >> fs [] >> `length (n2l 256 m) ≤ size` by ( rw [LENGTH_n2l] >> `256 = 2 ** 8` by EVAL_TAC >> ASM_REWRITE_TAC [] >> simp [log_change_base_power, GSYM LESS_EQ] >> rw [] >> fs [bitTheory.LOG2_def, dimword_def] >> `8 * (log 2 m DIV 8) ≤ log 2 m` by metis_tac [mul_div_bound, EVAL ``8 ≠ 0n``] >> `LOG 2 m ≤ LOG 2 (256 ** size)` by simp [LOG_LE_MONO, LESS_IMP_LESS_OR_EQ] >> pop_assum mp_tac >> `256 = 2 ** 8` by EVAL_TAC >> ASM_REWRITE_TAC [EXP_MUL] >> simp [log_base_power] >> Cases_on `log 2 m DIV 8 = size` >> rw [] >> CCONTR_TAC >> fs [] >> `log 2 m = (8 * (log 2 m DIV 8))` by intLib.COOPER_TAC >> fs [] >> `2 ** log 2 m = 2 ** (8 * (log 2 m DIV 8))` by rw [] >> fs [EXP_EXP_MULT] >> `2 ** log 2 m ≤ m` by rw [exp_log_bound] >> decide_tac) >> simp [mod_n2l, l2n_n2l, TAKE_LENGTH_TOO_LONG] ) >- metis_tac [le_write_num_length, DROP_LENGTH_APPEND] QED Theorem le_write_read: ∀size n bs bs'. size ≤ length bs ∧ le_read_num size bs = (n, bs') ⇒ le_write_num size n ++ bs' = bs Proof rw [le_read_num_def] >> qmatch_goalsub_abbrev_tac `l2n _ l` >> `le_write_num size (l2n 256 l) = take size bs` suffices_by metis_tac [TAKE_DROP] >> simp [le_write_num_def, w2l_l2w] >> `l2n 256 l < 256 ** size` by ( `size ≤ length bs` by decide_tac >> metis_tac [l2n_lt, LENGTH_TAKE, LENGTH_MAP, EVAL ``0n < 256``]) >> `every ($> 256) l` by ( simp [EVERY_MAP, Abbr `l`] >> irule EVERY_TAKE >> simp [] >> rpt (pop_assum kall_tac) >> Induct_on `bs` >> rw [] >> Cases_on `h` >> fs []) >> rw [n2l_l2n] >- ( rw [TAKE_def, take_replicate] >> Cases_on `size` >> fs [] >> rfs [l2n_0] >> unabbrev_all_tac >> fs [EVERY_MAP] >> ONCE_REWRITE_TAC [GSYM REPLICATE] >> qmatch_goalsub_abbrev_tac `take size _` >> qpat_assum `¬(_ < _)` mp_tac >> qpat_assum `every (\x. 0 = w2n x) _` mp_tac >> rpt (pop_assum kall_tac) >> qid_spec_tac `bs` >> Induct_on `size` >> rw [] >> Cases_on `bs` >> rw [] >> fs [] >> Cases_on `h` >> fs [] >> first_x_assum irule >> rw [] >> irule MONO_EVERY >> qexists_tac `(λx. 0 = w2n x)` >> rw []) >> fs [MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF] >> `exists (\y. 0 ≠ y) l` by ( fs [l2n_eq_0, combinTheory.o_DEF] >> fs [EXISTS_MEM, EVERY_MEM] >> qexists_tac `x` >> rfs [MOD_MOD, GREATER_DEF]) >> simp [LOG_l2n_dropWhile] >> `length (dropWhile ($= 0) (reverse l)) ≠ 0` by ( Cases_on `l` >> fs [dropWhile_eq_nil, combinTheory.o_DEF, EXISTS_REVERSE]) >> `0 < length (dropWhile ($= 0) (reverse l))` by decide_tac >> fs [SUC_PRE] >> `map n2w l = take size bs` by (simp [Abbr `l`, MAP_TAKE, MAP_MAP_o, combinTheory.o_DEF, n2w_w2n]) >> simp [TAKE_TAKE_MIN] >> `length l = size` by simp [Abbr `l`] >> `length (dropWhile ($= 0) (reverse l)) ≤ size` by metis_tac [LESS_EQ_TRANS, LENGTH_dropWhile_LESS_EQ, LENGTH_REVERSE] >> rw [MIN_DEF] >> fs [] >- ( simp [TAKE_APPEND, TAKE_TAKE_MIN, MIN_DEF, take_replicate] >> `replicate (length l − length (dropWhile ($= 0) (reverse l))) 0w = take (length l − (length (dropWhile ($= 0) (reverse l)))) (drop (length (dropWhile ($= 0) (reverse l))) bs)` suffices_by (rw [] >> irule take_drop_partition >> simp []) >> rw [LIST_EQ_REWRITE, EL_REPLICATE, EL_TAKE, EL_DROP] >> `length (dropWhile ($= 0) (reverse l)) = length (dropWhile (λx. 0 = w2n x) (reverse (take (length l) bs)))` by ( `reverse l = reverse (take (length l) (map w2n bs))` by metis_tac [] >> ONCE_ASM_REWRITE_TAC [] >> qpat_x_assum `Abbrev (l = _)` kall_tac >> simp [GSYM MAP_TAKE, GSYM MAP_REVERSE, dropWhile_map, combinTheory.o_DEF]) >> fs [] >> `x + length (dropWhile (λx. 0 = w2n x) (reverse (take (length l) bs))) < length l` by decide_tac >> drule (SIMP_RULE std_ss [LET_THM] dropWhile_rev_take) >> rw [] >> REWRITE_TAC [GSYM w2n_11, word_0_n2w] >> simp []) >- rw [TAKE_APPEND, TAKE_TAKE] QED Theorem b2v_v2b_lem: (∀f s v. value_shape f s v ⇒ (∀x t n. f n t x ⇒ fst (h x) = n ∧ g n t (snd (h x)) = x ∧ snd (h x) < 256 ** n) ⇒ ∀bs. bytes_to_value g s (value_to_bytes h v ++ bs) = (v, bs)) ∧ (∀f ss vs. value_shapes f ss vs ⇒ (∀x t n. f n t x ⇒ fst (h x) = n ∧ g n t (snd (h x)) = x ∧ snd (h x) < 256 ** n) ⇒ ∀bs. read_str g ss (flat (map (value_to_bytes h) vs) ++ bs) = (vs, bs)) Proof ho_match_mp_tac value_shape_ind >> rw [value_shape_def] >> fs [bytes_to_value_def, value_to_bytes_def] >> rw [] >- ( pairarg_tac >> fs [] >> first_x_assum drule >> simp [] >> rw [] >> simp [le_read_write]) >- ( qmatch_abbrev_tac `_ x = _` >> `x = (vs, bs)` suffices_by (simp [PAIR_MAP] >> metis_tac [PAIR_EQ, FST, SND]) >> unabbrev_all_tac >> qid_spec_tac `bs` >> Induct_on `vs` >> simp [bytes_to_value_def] >> rw [] >> fs [definition "reg_v_size_def"] >> pairarg_tac >> fs [] >> pairarg_tac >> fs [] >> rename1 `value_shape _ s v1` >> qpat_x_assum `_ ⇒ !bs. P bs` mp_tac >> impl_tac >> simp [] >> metis_tac [APPEND_ASSOC, PAIR_EQ]) >- ( qmatch_abbrev_tac `_ x = _` >> `x = (vs, bs)` suffices_by (simp [PAIR_MAP] >> metis_tac [PAIR_EQ, FST, SND]) >> metis_tac []) >- ( pairarg_tac >> fs [] >> pairarg_tac >> fs [] >> metis_tac [APPEND_ASSOC, PAIR_EQ]) QED Theorem b2v_v2b: ∀f g h s v bs. value_shape f s v ⇒ (∀x n t. f n t x ⇒ fst (h x) = n ∧ g n t (snd (h x)) = x ∧ snd (h x) < 256 ** n) ⇒ bytes_to_value g s (value_to_bytes h v ++ bs) = (v, bs) Proof metis_tac [b2v_v2b_lem] QED Theorem flookup_set_bytes: ∀tag bytes n h n'. flookup ((set_bytes tag bytes n h).memory) (A n') = if n ≤ n' ∧ n' < n + length bytes then Some (tag, el (n' - n) bytes) else flookup h.memory (A n') Proof Induct_on `bytes` >> rw [set_bytes_def, EL_CONS, PRE_SUB1] >> fs [ADD1, FLOOKUP_UPDATE] >> `n = n'` by decide_tac >> rw [] QED Theorem set_bytes_unchanged: ∀t bs p h. (set_bytes t bs p h).valid_addresses = h.valid_addresses ∧ (set_bytes t bs p h).allocations = h.allocations Proof Induct_on `bs` >> rw [set_bytes_def] QED Theorem allocate_unchanged: ∀h1 v1 t h2 v2. allocate h1 v1 t (v2, h2) ⇒ h1.valid_addresses = h2.valid_addresses ∧ h1.allocations ⊆ h2.allocations Proof rw [allocate_cases] >> rw [set_bytes_unchanged] QED Theorem allocate_heap_ok: ∀h1 v1 t v2 h2. heap_ok h1 ∧ allocate h1 v1 t (v2,h2) ⇒ heap_ok h2 Proof rw [allocate_cases, heap_ok_def] >- ( fs [allocations_ok_def] >> rpt gen_tac >> disch_tac >> fs [is_free_def] >> rw [] >> fs [set_bytes_unchanged] >> metis_tac [INTER_COMM]) >- ( rw [flookup_set_bytes, set_bytes_unchanged] >- rw [RIGHT_AND_OVER_OR, EXISTS_OR_THM, interval_to_set_def] >> eq_tac >> rw [] >> fs [interval_to_set_def] >> metis_tac []) QED Theorem set_bytes_heap_ok: ∀h tag bytes n b. heap_ok h ∧ is_allocated (Interval b n (n + length bytes)) h ⇒ heap_ok (set_bytes tag bytes n h) Proof rw [heap_ok_def] >- (fs [allocations_ok_def] >> rw [set_bytes_unchanged] >> metis_tac []) >- ( fs [flookup_set_bytes, set_bytes_unchanged] >> rw [] >> fs [is_allocated_def, interval_to_set_def, SUBSET_DEF] >> metis_tac [LESS_EQ_REFL, DECIDE ``!x y. x < x + SUC y``]) QED Theorem erase_tags_set_bytes: ∀p v l h. erase_tags (set_bytes p v l h) = set_bytes () v l (erase_tags h) Proof Induct_on `v` >> rw [set_bytes_def] >> irule (METIS_PROVE [] ``x = y ⇒ f a b c x = f a b c y``) >> rw [erase_tags_def] QED Theorem erase_tags_unit_id[simp]: ∀h. erase_tags h = h Proof rw [erase_tags_def, theorem "heap_component_equality", fmap_eq_flookup, FLOOKUP_o_f] >> CASE_TAC >> rw [] >> Cases_on `x'` >> rw [] QED Theorem is_allocated_suc: n ≤ n' ⇒ is_allocated (Interval b n (Suc n')) h ⇒ is_allocated (Interval b n n') h Proof rw [is_allocated_def, interval_ok_def, interval_to_set_def, SUBSET_DEF, interval_freeable_def] >- (first_x_assum irule >> rw []) >- (qexists_tac `b2` >> rw []) QED Theorem get_bytes_erase_tags: ∀h i. heap_ok h ∧ is_allocated i h ⇒ map snd (get_bytes (erase_tags h) i) = map snd (get_bytes h i) Proof Cases_on `i` >> rw [get_bytes_def, MAP_MAP_o, combinTheory.o_DEF, erase_tags_def] >> Induct_on `n0 - n` >> rw [erase_tags_def, FLOOKUP_o_f] >- (`n0 - n = 0` by decide_tac >> rw [COUNT_LIST_def]) >> Cases_on `n0` >> fs [] >> `Suc n' - n = Suc (n' - n)` by decide_tac >> asm_simp_tac std_ss [COUNT_LIST_SNOC] >> `v = n' - n` by decide_tac >> fs [] >> first_x_assum (qspecl_then [`n'`, `n`] mp_tac) >> rw [] >- ( fs [LIST_EQ_REWRITE, EL_MAP, FLOOKUP_o_f] >> rw [] >> `n ≤ n'` by decide_tac >> drule is_allocated_suc >> disch_then drule >> rw []) >> BasicProvers.EVERY_CASE_TAC >> rw [] >- ( fs [heap_ok_def] >> rfs [is_allocated_def] >> first_x_assum (qspec_then `n'` mp_tac) >> rw [] >> pop_assum (qspec_then `b2` mp_tac) >> rw [] >> fs [interval_to_set_def, SUBSET_DEF] >> first_x_assum (qspec_then `n'` mp_tac) >> rw []) >> pairarg_tac >> rw [] QED Theorem is_allocated_erase_tags[simp]: ∀i h. is_allocated i (erase_tags h) ⇔ is_allocated i h Proof rw [is_allocated_def, erase_tags_def] QED export_theory ();