(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) open Fol module Funsym = Ses.Funsym module Predsym = Ses.Predsym module T = Term module F = Formula let reg r = let name = Llair.Reg.name r in let global = Llair.Reg.is_global r in Var.program ~name ~global let regs = Llair.Reg.Set.fold ~init:Var.Set.empty ~f:(fun s r -> Var.Set.add s (reg r) ) let uap0 f = T.apply f [||] let uap1 f a = T.apply f [|a|] let uap2 f a b = T.apply f [|a; b|] let uposlit2 p a b = F.uposlit p [|a; b|] let uneglit2 p a b = F.uneglit p [|a; b|] let rec ap_ttt : 'a. (T.t -> T.t -> 'a) -> _ -> _ -> 'a = fun f a b -> f (term a) (term b) and ap_ttf (f : T.t -> T.t -> F.t) a b = F.inject (ap_ttt f a b) and ap_fff (f : F.t -> F.t -> F.t) a b = F.inject (f (formula a) (formula b)) and ap_uut : 'a. (T.t -> T.t -> 'a) -> _ -> _ -> _ -> 'a = fun f typ a b -> let bits = Llair.Typ.bit_size_of typ in let unsigned x = uap1 (Unsigned bits) x in f (unsigned (term a)) (unsigned (term b)) and ap_uuf (f : T.t -> T.t -> F.t) typ a b = F.inject (ap_uut f typ a b) and term : Llair.Exp.t -> T.t = fun e -> let imp p q = F.or_ (F.not_ p) q in let nimp p q = F.and_ p (F.not_ q) in let if_ p q = F.or_ p (F.not_ q) in let nif p q = F.and_ (F.not_ p) q in match e with (* formulas *) | Ap2 (Eq, Integer {bits= 1; _}, p, q) -> ap_fff F.iff p q | Ap2 (Dq, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q | Ap2 ((Gt | Ugt), Integer {bits= 1; _}, p, q) -> ap_fff nimp p q | Ap2 ((Lt | Ult), Integer {bits= 1; _}, p, q) -> ap_fff nif p q | Ap2 ((Ge | Uge), Integer {bits= 1; _}, p, q) -> ap_fff if_ p q | Ap2 ((Le | Ule), Integer {bits= 1; _}, p, q) -> ap_fff imp p q | Ap2 (Add, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q | Ap2 (Sub, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q | Ap2 (Mul, Integer {bits= 1; _}, p, q) -> ap_fff F.and_ p q (* div and rem are not formulas even if bits=1 due to division by 0 *) | Ap2 (And, Integer {bits= 1; _}, p, q) -> ap_fff F.and_ p q | Ap2 (Or, Integer {bits= 1; _}, p, q) -> ap_fff F.or_ p q | Ap2 (Xor, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q | Ap2 ((Shl | Lshr), Integer {bits= 1; _}, p, q) -> ap_fff nimp p q | Ap2 (Ashr, Integer {bits= 1; _}, p, q) -> ap_fff F.or_ p q | Ap3 (Conditional, Integer {bits= 1; _}, cnd, pos, neg) -> F.inject (F.cond ~cnd:(formula cnd) ~pos:(formula pos) ~neg:(formula neg)) (* terms *) | Reg {name; global; typ= _} -> T.var (Var.program ~name ~global) | Label {parent; name} -> uap0 (Funsym.uninterp ("label_" ^ parent ^ "_" ^ name)) | Integer {typ= _; data} -> T.integer data | Float {data; typ= _} -> ( match Q.of_float (Float.of_string data) with | q when Q.is_real q -> T.rational q | _ | (exception Invalid_argument _) -> uap0 (Funsym.uninterp ("float_" ^ data)) ) | Ap1 (Signed {bits}, _, e) -> let a = term e in if bits = 1 then match F.project a with | Some fml -> F.inject fml | _ -> uap1 (Signed bits) a else uap1 (Signed bits) a | Ap1 (Unsigned {bits}, _, e) -> let a = term e in if bits = 1 then match F.project a with | Some fml -> F.inject fml | _ -> uap1 (Unsigned bits) a else uap1 (Unsigned bits) a | Ap1 (Convert {src}, dst, e) -> let s = Format.asprintf "convert_%a_%a" Llair.Typ.pp src Llair.Typ.pp dst in uap1 (Funsym.uninterp s) (term e) | Ap2 (Eq, _, d, e) -> ap_ttf F.eq d e | Ap2 (Dq, _, d, e) -> ap_ttf F.dq d e | Ap2 (Gt, _, d, e) -> ap_ttf F.gt d e | Ap2 (Lt, _, d, e) -> ap_ttf F.lt d e | Ap2 (Ge, _, d, e) -> ap_ttf F.ge d e | Ap2 (Le, _, d, e) -> ap_ttf F.le d e | Ap2 (Ugt, typ, d, e) -> ap_uuf F.gt typ d e | Ap2 (Ult, typ, d, e) -> ap_uuf F.lt typ d e | Ap2 (Uge, typ, d, e) -> ap_uuf F.ge typ d e | Ap2 (Ule, typ, d, e) -> ap_uuf F.le typ d e | Ap2 (Ord, _, d, e) -> ap_ttf (uposlit2 (Predsym.uninterp "ord")) d e | Ap2 (Uno, _, d, e) -> ap_ttf (uneglit2 (Predsym.uninterp "ord")) d e | Ap2 (Add, _, d, e) -> ap_ttt T.add d e | Ap2 (Sub, _, d, e) -> ap_ttt T.sub d e | Ap2 (Mul, _, d, e) -> ap_ttt T.mul d e | Ap2 (Div, _, d, e) -> ap_ttt T.div d e | Ap2 (Rem, _, d, e) -> ap_ttt (uap2 Rem) d e | Ap2 (Udiv, typ, d, e) -> ap_uut T.div typ d e | Ap2 (Urem, typ, d, e) -> ap_uut (uap2 Rem) typ d e | Ap2 (And, _, d, e) -> ap_ttt (uap2 BitAnd) d e | Ap2 (Or, _, d, e) -> ap_ttt (uap2 BitOr) d e | Ap2 (Xor, _, d, e) -> ap_ttt (uap2 BitXor) d e | Ap2 (Shl, _, d, e) -> ap_ttt (uap2 BitShl) d e | Ap2 (Lshr, _, d, e) -> ap_ttt (uap2 BitLshr) d e | Ap2 (Ashr, _, d, e) -> ap_ttt (uap2 BitAshr) d e | Ap3 (Conditional, _, cnd, thn, els) -> T.ite ~cnd:(formula cnd) ~thn:(term thn) ~els:(term els) | Ap1 (Select idx, _, rcd) -> T.select ~rcd:(term rcd) ~idx | Ap2 (Update idx, _, rcd, elt) -> T.update ~rcd:(term rcd) ~idx ~elt:(term elt) | ApN (Record, _, elts) -> T.record (Array.map ~f:term (IArray.to_array elts)) | RecRecord (i, _) -> T.ancestor i | Ap1 (Splat, _, byt) -> T.splat (term byt) and formula e = F.dq0 (term e)