(* * Copyright (c) 2009 - 2013 Monoidics ltd. * Copyright (c) 2013 - present Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) open! Utils (** Operators for the abstract domain. In particular, join and meet. *) module L = Logging module F = Format let (++) = IntLit.add let (--) = IntLit.sub (** {2 Utility functions for ids} *) let can_rename id = Ident.is_primed id || Ident.is_footprint id (** {2 Utility functions for sigma} *) let sigma_equal sigma1 sigma2 = let rec f sigma1_rest sigma2_rest = match (sigma1_rest, sigma2_rest) with | [], [] -> () | [], _:: _ | _:: _, [] -> (L.d_strln "failure reason 1"; raise IList.Fail) | hpred1:: sigma1_rest', hpred2:: sigma2_rest' -> if Sil.hpred_equal hpred1 hpred2 then f sigma1_rest' sigma2_rest' else (L.d_strln "failure reason 2"; raise IList.Fail) in let sigma1_sorted = IList.sort Sil.hpred_compare sigma1 in let sigma2_sorted = IList.sort Sil.hpred_compare sigma2 in f sigma1_sorted sigma2_sorted let sigma_get_start_lexps_sort sigma = let exp_compare_neg e1 e2 = - (Exp.compare e1 e2) in let filter e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in let lexps = Sil.hpred_list_get_lexps filter sigma in IList.sort exp_compare_neg lexps (** {2 Utility functions for side} *) type side = Lhs | Rhs let select side e1 e2 = match side with | Lhs -> e1 | Rhs -> e2 let opposite side = match side with | Lhs -> Rhs | Rhs -> Lhs let do_side side f e1 e2 = match side with | Lhs -> f e1 e2 | Rhs -> f e2 e1 (** {2 Sets for expression pairs} *) module EPset = Set.Make (struct type t = Exp.t * Exp.t let compare (e1, e1') (e2, e2') = match (Exp.compare e1 e2) with | i when i <> 0 -> i | _ -> Exp.compare e1' e2' end) (** {2 Module for maintaining information about noninjectivity during join} *) module NonInj : sig val init : unit -> unit val final : unit -> unit val add : side -> Exp.t -> Exp.t -> unit val check : side -> Exp.t list -> bool end = struct (* mappings from primed or footprint var exps to primed or footprint var exps *) let equiv_tbl1 = Hashtbl.create 32 let equiv_tbl2 = Hashtbl.create 32 (* mappings from primed or footprint var exps to normal var, lvar or const exps *) let const_tbl1 = Hashtbl.create 32 let const_tbl2 = Hashtbl.create 32 let reset () = Hashtbl.clear equiv_tbl1; Hashtbl.clear equiv_tbl2; Hashtbl.clear const_tbl1; Hashtbl.clear const_tbl2 let init () = reset () let final () = reset () let lookup' tbl e default = match e with | Exp.Var _ -> begin try Hashtbl.find tbl e with Not_found -> (Hashtbl.replace tbl e default; default) end | _ -> assert false let lookup_equiv' tbl e = lookup' tbl e e let lookup_const' tbl e = lookup' tbl e Exp.Set.empty let rec find' tbl e = let e' = lookup_equiv' tbl e in match e' with | Exp.Var _ -> if Exp.equal e e' then e else begin let root = find' tbl e' in Hashtbl.replace tbl e root; root end | _ -> assert false let union' tbl const_tbl e1 e2 = let r1 = find' tbl e1 in let r2 = find' tbl e2 in let new_r, old_r = match (Exp.compare r1 r2) with | i when i <= 0 -> r1, r2 | _ -> r2, r1 in let new_c = lookup_const' const_tbl new_r in let old_c = lookup_const' const_tbl old_r in let res_c = Exp.Set.union new_c old_c in if Exp.Set.cardinal res_c > 1 then (L.d_strln "failure reason 3"; raise IList.Fail); Hashtbl.replace tbl old_r new_r; Hashtbl.replace const_tbl new_r res_c let replace_const' tbl const_tbl e c = let r = find' tbl e in let set = Exp.Set.add c (lookup_const' const_tbl r) in if Exp.Set.cardinal set > 1 then (L.d_strln "failure reason 4"; raise IList.Fail); Hashtbl.replace const_tbl r set let add side e e' = let tbl, const_tbl = match side with | Lhs -> equiv_tbl1, const_tbl1 | Rhs -> equiv_tbl2, const_tbl2 in match e, e' with | Exp.Var id, Exp.Var id' -> begin match can_rename id, can_rename id' with | true, true -> union' tbl const_tbl e e' | true, false -> replace_const' tbl const_tbl e e' | false, true -> replace_const' tbl const_tbl e' e | _ -> L.d_strln "failure reason 5"; raise IList.Fail end | Exp.Var id, Exp.Const _ | Exp.Var id, Exp.Lvar _ -> if (can_rename id) then replace_const' tbl const_tbl e e' else (L.d_strln "failure reason 6"; raise IList.Fail) | Exp.Const _, Exp.Var id' | Exp.Lvar _, Exp.Var id' -> if (can_rename id') then replace_const' tbl const_tbl e' e else (L.d_strln "failure reason 7"; raise IList.Fail) | _ -> if not (Exp.equal e e') then (L.d_strln "failure reason 8"; raise IList.Fail) else () let check side es = let f = function Exp.Var id -> can_rename id | _ -> false in let vars, nonvars = IList.partition f es in let tbl, const_tbl = match side with | Lhs -> equiv_tbl1, const_tbl1 | Rhs -> equiv_tbl2, const_tbl2 in if (IList.length nonvars > 1) then false else match vars, nonvars with | [], _ | [_], [] -> true | v:: vars', _ -> let r = find' tbl v in let set = lookup_const' const_tbl r in (IList.for_all (fun v' -> Exp.equal (find' tbl v') r) vars') && (IList.for_all (fun c -> Exp.Set.mem c set) nonvars) end (** {2 Modules for checking whether join or meet loses too much info} *) module type InfoLossCheckerSig = sig val init : Prop.sigma -> Prop.sigma -> unit val final : unit -> unit val lost_little : side -> Exp.t -> Exp.t list -> bool val add : side -> Exp.t -> Exp.t -> unit end module Dangling : sig val init : Prop.sigma -> Prop.sigma -> unit val final : unit -> unit val check : side -> Exp.t -> bool end = struct let lexps1 = ref Exp.Set.empty let lexps2 = ref Exp.Set.empty let get_lexp_set' sigma = let lexp_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma in IList.fold_left (fun set e -> Exp.Set.add e set) Exp.Set.empty lexp_lst let init sigma1 sigma2 = lexps1 := get_lexp_set' sigma1; lexps2 := get_lexp_set' sigma2 let final () = lexps1 := Exp.Set.empty; lexps2 := Exp.Set.empty (* conservatively checks whether e is dangling *) let check side e = let lexps = match side with | Lhs -> !lexps1 | Rhs -> !lexps2 in match e with | Exp.Var id -> can_rename id && not (Exp.Set.mem e lexps) | Exp.Const _ -> not (Exp.Set.mem e lexps) | Exp.BinOp _ -> not (Exp.Set.mem e lexps) | _ -> false end module CheckJoinPre : InfoLossCheckerSig = struct let init sigma1 sigma2 = NonInj.init (); Dangling.init sigma1 sigma2 let final () = NonInj.final (); Dangling.final () let fail_case side e es = let side_op = opposite side in match e with | Exp.Lvar _ -> false | Exp.Var id when Ident.is_normal id -> IList.length es >= 1 | Exp.Var _ -> if Config.join_cond = 0 then IList.exists (Exp.equal Exp.zero) es else if Dangling.check side e then begin let r = IList.exists (fun e' -> not (Dangling.check side_op e')) es in if r then begin L.d_str ".... Dangling Check (dang e:"; Sil.d_exp e; L.d_str ") (? es:"; Sil.d_exp_list es; L.d_strln ") ...."; L.d_ln () end; r end else begin let r = IList.exists (Dangling.check side_op) es in if r then begin L.d_str ".... Dangling Check (notdang e:"; Sil.d_exp e; L.d_str ") (? es:"; Sil.d_exp_list es; L.d_strln ") ...."; L.d_ln () end; r end | _ -> false let lost_little side e es = let side_op = opposite side in let es = match e with Exp.Const _ -> [] | _ -> es in if (fail_case side e es) then false else match es with | [] | [_] -> true | _ -> (NonInj.check side_op es) let add = NonInj.add end module CheckJoinPost : InfoLossCheckerSig = struct let init _ _ = NonInj.init () let final () = NonInj.final () let fail_case _ e es = match e with | Exp.Lvar _ -> false | Exp.Var id when Ident.is_normal id -> IList.length es >= 1 | Exp.Var _ -> false | _ -> false let lost_little side e es = let side_op = opposite side in let es = match e with Exp.Const _ -> [] | _ -> es in if (fail_case side e es) then false else match es with | [] | [_] -> true | _ -> NonInj.check side_op es let add = NonInj.add end module CheckJoin : sig val init : JoinState.mode -> Prop.sigma -> Prop.sigma -> unit val final : unit -> unit val lost_little : side -> Exp.t -> Exp.t list -> bool val add : side -> Exp.t -> Exp.t -> unit end = struct let mode_ref : JoinState.mode ref = ref JoinState.Post let init mode sigma1 sigma2 = mode_ref := mode; match mode with | JoinState.Pre -> CheckJoinPre.init sigma1 sigma2 | JoinState.Post -> CheckJoinPost.init sigma1 sigma2 let final () = match !mode_ref with | JoinState.Pre -> CheckJoinPre.final (); mode_ref := JoinState.Post | JoinState.Post -> CheckJoinPost.final (); mode_ref := JoinState.Post let lost_little side e es = match !mode_ref with | JoinState.Pre -> CheckJoinPre.lost_little side e es | JoinState.Post -> CheckJoinPost.lost_little side e es let add side e1 e2 = match !mode_ref with | JoinState.Pre -> CheckJoinPre.add side e1 e2 | JoinState.Post -> CheckJoinPost.add side e1 e2 end module CheckMeet : InfoLossCheckerSig = struct let lexps1 = ref Exp.Set.empty let lexps2 = ref Exp.Set.empty let init sigma1 sigma2 = let lexps1_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma1 in let lexps2_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma2 in lexps1 := Sil.elist_to_eset lexps1_lst; lexps2 := Sil.elist_to_eset lexps2_lst let final () = lexps1 := Exp.Set.empty; lexps2 := Exp.Set.empty let lost_little side e es = let lexps = match side with | Lhs -> !lexps1 | Rhs -> !lexps2 in match es, e with | [], _ -> true | [Exp.Const _], Exp.Lvar _ -> false | [Exp.Const _], Exp.Var _ -> not (Exp.Set.mem e lexps) | [Exp.Const _], _ -> assert false | [_], Exp.Lvar _ | [_], Exp.Var _ -> true | [_], _ -> assert false | _, Exp.Lvar _ | _, Exp.Var _ -> false | _, Exp.Const _ -> assert false | _ -> assert false let add = NonInj.add end (** {2 Module for worklist} *) module Todo : sig exception Empty type t val init : unit -> unit val final : unit -> unit val reset : (Exp.t * Exp.t * Exp.t) list -> unit val push : (Exp.t * Exp.t * Exp.t) -> unit val pop : unit -> (Exp.t * Exp.t * Exp.t) val set : t -> unit val take : unit -> t end = struct exception Empty type t = (Exp.t * Exp.t * Exp.t) list let tbl = ref [] let init () = tbl := [] let final () = tbl := [] let reset todo = tbl := todo let push e = tbl := e :: !tbl let pop () = match !tbl with | h:: t -> tbl := t; h | _ -> raise Empty let set todo = tbl := todo let take () = let res = !tbl in tbl := []; res end (** {2 Module for introducing fresh variables} *) module FreshVarExp : sig val init : unit -> unit val get_fresh_exp : Exp.t -> Exp.t -> Exp.t val get_induced_pi : Tenv.t -> unit -> Prop.pi val final : unit -> unit (* val lookup : side -> Exp.t -> (Exp.t * Exp.t) option *) end = struct let t = ref [] let init () = t := [] let final () = t := [] let entry_compare (e1, e2, _) (_, e2', _) = let n1 = Exp.compare e1 e2 in if n1 <> 0 then n1 else Exp.compare e2 e2' let get_fresh_exp e1 e2 = try let (_, _, e) = IList.find (fun (e1', e2', _) -> Exp.equal e1 e1' && Exp.equal e2 e2') !t in e with Not_found -> let e = Exp.get_undefined (JoinState.get_footprint ()) in t := (e1, e2, e)::!t; e let get_induced_atom tenv acc strict_lower upper e = let ineq_lower = Prop.mk_inequality tenv (Exp.BinOp(Binop.Lt, strict_lower, e)) in let ineq_upper = Prop.mk_inequality tenv (Exp.BinOp(Binop.Le, e, upper)) in ineq_lower:: ineq_upper:: acc let minus2_to_2 = IList.map IntLit.of_int [-2; -1; 0; 1; 2] let get_induced_pi tenv () = let t_sorted = IList.sort entry_compare !t in let add_and_chk_eq e1 e1' n = match e1, e1' with | Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n1') -> IntLit.eq (n1 ++ n) n1' | _ -> false in let add_and_gen_eq e e' n = let e_plus_n = Exp.BinOp(Binop.PlusA, e, Exp.int n) in Prop.mk_eq tenv e_plus_n e' in let rec f_eqs_entry ((e1, e2, e) as entry) eqs_acc t_seen = function | [] -> eqs_acc, t_seen | ((e1', e2', e') as entry'):: t_rest' -> try let n = IList.find (fun n -> add_and_chk_eq e1 e1' n && add_and_chk_eq e2 e2' n) minus2_to_2 in let eq = add_and_gen_eq e e' n in let eqs_acc' = eq:: eqs_acc in f_eqs_entry entry eqs_acc' t_seen t_rest' with Not_found -> let t_seen' = entry':: t_seen in f_eqs_entry entry eqs_acc t_seen' t_rest' in let rec f_eqs eqs_acc t_acc = function | [] -> (eqs_acc, t_acc) | entry:: t_rest -> let eqs_acc', t_rest' = f_eqs_entry entry eqs_acc [] t_rest in let t_acc' = entry:: t_acc in f_eqs eqs_acc' t_acc' t_rest' in let eqs, t_minimal = f_eqs [] [] t_sorted in let f_ineqs acc (e1, e2, e) = match e1, e2 with | Exp.Const (Const.Cint n1), Exp.Const (Const.Cint n2) -> let strict_lower1, upper1 = if IntLit.leq n1 n2 then (n1 -- IntLit.one, n2) else (n2 -- IntLit.one, n1) in let e_strict_lower1 = Exp.int strict_lower1 in let e_upper1 = Exp.int upper1 in get_induced_atom tenv acc e_strict_lower1 e_upper1 e | _ -> acc in IList.fold_left f_ineqs eqs t_minimal (* let lookup side e = try let (e1, e2, e) = IList.find (fun (e1', e2', _) -> Exp.equal e (select side e1' e2')) !t in Some (e, select (opposite side) e1 e2) with Not_found -> None *) end (** {2 Modules for renaming} *) module Rename : sig type data_opt = ExtFresh | ExtDefault of Exp.t val init : unit -> unit val final : unit -> unit val reset : unit -> (Exp.t * Exp.t * Exp.t) list val extend : Exp.t -> Exp.t -> data_opt -> Exp.t val check : (side -> Exp.t -> Exp.t list -> bool) -> bool val get_others : side -> Exp.t -> (Exp.t * Exp.t) option val get_other_atoms : Tenv.t -> side -> Sil.atom -> (Sil.atom * Sil.atom) option val lookup : side -> Exp.t -> Exp.t val lookup_list : side -> Exp.t list -> Exp.t list val lookup_list_todo : side -> Exp.t list -> Exp.t list val to_subst_proj : side -> Sil.fav -> Sil.subst val to_subst_emb : side -> Sil.subst (* val get : Exp.t -> Exp.t -> Exp.t option val pp : printenv -> Format.formatter -> (Exp.t * Exp.t * Exp.t) list -> unit *) end = struct type t = (Exp.t * Exp.t * Exp.t) list let tbl : t ref = ref [] let init () = tbl := [] let final () = tbl := [] let reset () = let f = function | Exp.Var id, e, _ | e, Exp.Var id, _ -> (Ident.is_footprint id) && (Sil.fav_for_all (Sil.exp_fav e) (fun id -> not (Ident.is_primed id))) | _ -> false in let t' = IList.filter f !tbl in tbl := t'; t' let push v = tbl := v :: !tbl let check lost_little = let f side e = let side_op = opposite side in let assoc_es = match e with | Exp.Const _ -> [] | Exp.Lvar _ | Exp.Var _ | Exp.BinOp (Binop.PlusA, Exp.Var _, _) -> let is_same_e (e1, e2, _) = Exp.equal e (select side e1 e2) in let assoc = IList.filter is_same_e !tbl in IList.map (fun (e1, e2, _) -> select side_op e1 e2) assoc | _ -> L.d_str "no pattern match in check lost_little e: "; Sil.d_exp e; L.d_ln (); raise IList.Fail in lost_little side e assoc_es in let lhs_es = IList.map (fun (e1, _, _) -> e1) !tbl in let rhs_es = IList.map (fun (_, e2, _) -> e2) !tbl in (IList.for_all (f Rhs) rhs_es) && (IList.for_all (f Lhs) lhs_es) let lookup_side' side e = let f (e1, e2, _) = Exp.equal e (select side e1 e2) in IList.filter f !tbl let lookup_side_induced' side e = let res = ref [] in let f v = match v, side with | (Exp.BinOp (Binop.PlusA, e1', Exp.Const (Const.Cint i)), e2, e'), Lhs when Exp.equal e e1' -> let c' = Exp.int (IntLit.neg i) in let v' = (e1', Exp.BinOp(Binop.PlusA, e2, c'), Exp.BinOp (Binop.PlusA, e', c')) in res := v'::!res | (e1, Exp.BinOp (Binop.PlusA, e2', Exp.Const (Const.Cint i)), e'), Rhs when Exp.equal e e2' -> let c' = Exp.int (IntLit.neg i) in let v' = (Exp.BinOp(Binop.PlusA, e1, c'), e2', Exp.BinOp (Binop.PlusA, e', c')) in res := v'::!res | _ -> () in begin IList.iter f !tbl; IList.rev !res end (* Return the triple whose side is [e], if it exists unique *) let lookup' todo side e : Exp.t = match e with | Exp.Var id when can_rename id -> begin let r = lookup_side' side e in match r with | [(_, _, id) as t] -> if todo then Todo.push t; id | _ -> L.d_strln "failure reason 9"; raise IList.Fail end | Exp.Var _ | Exp.Const _ | Exp.Lvar _ -> if todo then Todo.push (e, e, e); e | _ -> L.d_strln "failure reason 10"; raise IList.Fail let lookup side e = lookup' false side e let lookup_todo side e = lookup' true side e let lookup_list side l = IList.map (lookup side) l let lookup_list_todo side l = IList.map (lookup_todo side) l let to_subst_proj (side: side) vars = let renaming_restricted = IList.filter (function (_, _, Exp.Var i) -> Sil.fav_mem vars i | _ -> assert false) !tbl in let sub_list_side = IList.map (function (e1, e2, Exp.Var i) -> (i, select side e1 e2) | _ -> assert false) renaming_restricted in let sub_list_side_sorted = IList.sort (fun (_, e) (_, e') -> Exp.compare e e') sub_list_side in let rec find_duplicates = function | (_, e):: ((_, e'):: _ as t) -> Exp.equal e e' || find_duplicates t | _ -> false in if find_duplicates sub_list_side_sorted then (L.d_strln "failure reason 11"; raise IList.Fail) else Sil.sub_of_list sub_list_side let to_subst_emb (side : side) = let renaming_restricted = let pick_id_case (e1, e2, _) = match select side e1 e2 with | Exp.Var i -> can_rename i | _ -> false in IList.filter pick_id_case !tbl in let sub_list = let project (e1, e2, e) = match select side e1 e2 with | Exp.Var i -> (i, e) | _ -> assert false in IList.map project renaming_restricted in let sub_list_sorted = let compare (i, _) (i', _) = Ident.compare i i' in IList.sort compare sub_list in let rec find_duplicates = function | (i, _):: ((i', _):: _ as t) -> Ident.equal i i' || find_duplicates t | _ -> false in if find_duplicates sub_list_sorted then (L.d_strln "failure reason 12"; raise IList.Fail) else Sil.sub_of_list sub_list_sorted let get_others' f_lookup side e = let side_op = opposite side in let r = f_lookup side e in match r with | [] -> None | [(e1, e2, e')] -> Some (e', select side_op e1 e2) | _ -> None let get_others = get_others' lookup_side' let get_others_direct_or_induced side e = let others = get_others side e in match others with | None -> get_others' lookup_side_induced' side e | Some _ -> others let get_others_deep side = function | Exp.BinOp(op, e, e') -> let others = get_others_direct_or_induced side e in let others' = get_others_direct_or_induced side e' in (match others, others' with | None, _ | _, None -> None | Some (e_res, e_op), Some(e_res', e_op') -> let e_res'' = Exp.BinOp(op, e_res, e_res') in let e_op'' = Exp.BinOp(op, e_op, e_op') in Some (e_res'', e_op'')) | _ -> None let get_other_atoms tenv side atom_in = let build_other_atoms construct side e = if Config.trace_join then (L.d_str "build_other_atoms: "; Sil.d_exp e; L.d_ln ()); let others1 = get_others_direct_or_induced side e in let others2 = match others1 with None -> get_others_deep side e | Some _ -> others1 in match others2 with | None -> None | Some (e_res, e_op) -> let a_res = construct e_res in let a_op = construct e_op in if Config.trace_join then begin L.d_str "build_other_atoms (successful) "; Sil.d_atom a_res; L.d_str ", "; Sil.d_atom a_op; L.d_ln () end; Some (a_res, a_op) in let exp_contains_only_normal_ids e = let fav = Sil.exp_fav e in Sil.fav_for_all fav Ident.is_normal in let atom_contains_only_normal_ids a = let fav = Sil.atom_fav a in Sil.fav_for_all fav Ident.is_normal in let normal_ids_only = atom_contains_only_normal_ids atom_in in if normal_ids_only then Some (atom_in, atom_in) else begin match atom_in with | Sil.Aneq((Exp.Var id as e), e') | Sil.Aneq(e', (Exp.Var id as e)) when (exp_contains_only_normal_ids e' && not (Ident.is_normal id)) -> build_other_atoms (fun e0 -> Prop.mk_neq tenv e0 e') side e | Sil.Apred (a, (Var id as e) :: es) when not (Ident.is_normal id) && IList.for_all exp_contains_only_normal_ids es -> build_other_atoms (fun e0 -> Prop.mk_pred tenv a (e0 :: es)) side e | Sil.Anpred (a, (Var id as e) :: es) when not (Ident.is_normal id) && IList.for_all exp_contains_only_normal_ids es -> build_other_atoms (fun e0 -> Prop.mk_npred tenv a (e0 :: es)) side e | Sil.Aeq((Exp.Var id as e), e') | Sil.Aeq(e', (Exp.Var id as e)) when (exp_contains_only_normal_ids e' && not (Ident.is_normal id)) -> build_other_atoms (fun e0 -> Prop.mk_eq tenv e0 e') side e | Sil.Aeq(Exp.BinOp(Binop.Le, e, e'), Exp.Const (Const.Cint i)) | Sil.Aeq(Exp.Const (Const.Cint i), Exp.BinOp(Binop.Le, e, e')) when IntLit.isone i && (exp_contains_only_normal_ids e') -> let construct e0 = Prop.mk_inequality tenv (Exp.BinOp(Binop.Le, e0, e')) in build_other_atoms construct side e | Sil.Aeq(Exp.BinOp(Binop.Lt, e', e), Exp.Const (Const.Cint i)) | Sil.Aeq(Exp.Const (Const.Cint i), Exp.BinOp(Binop.Lt, e', e)) when IntLit.isone i && (exp_contains_only_normal_ids e') -> let construct e0 = Prop.mk_inequality tenv (Exp.BinOp(Binop.Lt, e', e0)) in build_other_atoms construct side e | Sil.Aeq _ | Aneq _ | Apred _ | Anpred _ -> None end type data_opt = ExtFresh | ExtDefault of Exp.t (* Extend the renaming relation. At least one of e1 and e2 * should be a primed or footprint variable *) let extend e1 e2 default_op = try let eq_to_e (f1, f2, _) = Exp.equal e1 f1 && Exp.equal e2 f2 in let _, _, res = IList.find eq_to_e !tbl in res with Not_found -> let fav1 = Sil.exp_fav e1 in let fav2 = Sil.exp_fav e2 in let no_ren1 = not (Sil.fav_exists fav1 can_rename) in let no_ren2 = not (Sil.fav_exists fav2 can_rename) in let some_primed () = Sil.fav_exists fav1 Ident.is_primed || Sil.fav_exists fav2 Ident.is_primed in let e = if (no_ren1 && no_ren2) then if (Exp.equal e1 e2) then e1 else (L.d_strln "failure reason 13"; raise IList.Fail) else match default_op with | ExtDefault e -> e | ExtFresh -> let kind = if JoinState.get_footprint () && not (some_primed ()) then Ident.kfootprint else Ident.kprimed in Exp.Var (Ident.create_fresh kind) in let entry = e1, e2, e in push entry; Todo.push entry; e (* let get e1 e2 = let f (e1', e2', _) = Exp.equal e1 e1' && Exp.equal e2 e2' in match (IList.filter f !tbl) with | [] -> None | (_, _, e):: _ -> Some e let pp pe f renaming = let pp_triple f (e1, e2, e3) = F.fprintf f "(%a,%a,%a)" (Sil.pp_exp pe) e3 (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in (pp_seq pp_triple) f renaming *) end (** {2 Functions for constructing fresh sil data types} *) let extend_side' kind side e = match Rename.get_others side e with | None -> let e_op = Exp.Var (Ident.create_fresh kind) in let e_new = Exp.Var (Ident.create_fresh kind) in let e1, e2 = match side with | Lhs -> e, e_op | Rhs -> e_op, e in Rename.extend e1 e2 (Rename.ExtDefault (e_new)) | Some (e', _) -> e' let rec exp_construct_fresh side e = match e with | Exp.Var id -> if Ident.is_normal id then (Todo.push (e, e, e); e) else if Ident.is_footprint id then extend_side' Ident.kfootprint side e else extend_side' Ident.kprimed side e | Exp.Const _ -> e | Exp.Cast (t, e1) -> let e1' = exp_construct_fresh side e1 in Exp.Cast (t, e1') | Exp.UnOp(unop, e1, topt) -> let e1' = exp_construct_fresh side e1 in Exp.UnOp(unop, e1', topt) | Exp.BinOp(binop, e1, e2) -> let e1' = exp_construct_fresh side e1 in let e2' = exp_construct_fresh side e2 in Exp.BinOp(binop, e1', e2') | Exp.Exn _ -> e | Exp.Closure _ -> e | Exp.Lvar _ -> e | Exp.Lfield(e1, fld, typ) -> let e1' = exp_construct_fresh side e1 in Exp.Lfield(e1', fld, typ) | Exp.Lindex(e1, e2) -> let e1' = exp_construct_fresh side e1 in let e2' = exp_construct_fresh side e2 in Exp.Lindex(e1', e2') | Exp.Sizeof (_, None, _) -> e | Exp.Sizeof (typ, Some len, st) -> Exp.Sizeof (typ, Some (exp_construct_fresh side len), st) let strexp_construct_fresh side = let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in Sil.strexp_expmap f let hpred_construct_fresh side = let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in Sil.hpred_expmap f (** {2 Join and Meet for Ids} *) let ident_same_kind_primed_footprint id1 id2 = (Ident.is_primed id1 && Ident.is_primed id2) || (Ident.is_footprint id1 && Ident.is_footprint id2) let ident_partial_join (id1: Ident.t) (id2: Ident.t) = match Ident.is_normal id1, Ident.is_normal id2 with | true, true -> if Ident.equal id1 id2 then Exp.Var id1 else (L.d_strln "failure reason 14"; raise IList.Fail) | true, _ | _, true -> Rename.extend (Exp.Var id1) (Exp.Var id2) Rename.ExtFresh | _ -> begin if not (ident_same_kind_primed_footprint id1 id2) then (L.d_strln "failure reason 15"; raise IList.Fail) else let e1 = Exp.Var id1 in let e2 = Exp.Var id2 in Rename.extend e1 e2 Rename.ExtFresh end let ident_partial_meet (id1: Ident.t) (id2: Ident.t) = match Ident.is_normal id1, Ident.is_normal id2 with | true, true -> if Ident.equal id1 id2 then Exp.Var id1 else (L.d_strln "failure reason 16"; raise IList.Fail) | true, _ -> let e1, e2 = Exp.Var id1, Exp.Var id2 in Rename.extend e1 e2 (Rename.ExtDefault(e1)) | _, true -> let e1, e2 = Exp.Var id1, Exp.Var id2 in Rename.extend e1 e2 (Rename.ExtDefault(e2)) | _ -> if Ident.is_primed id1 && Ident.is_primed id2 then Rename.extend (Exp.Var id1) (Exp.Var id2) Rename.ExtFresh else if Ident.is_footprint id1 && Ident.equal id1 id2 then let e = Exp.Var id1 in Rename.extend e e (Rename.ExtDefault(e)) else (L.d_strln "failure reason 17"; raise IList.Fail) (** {2 Join and Meet for Exps} *) let option_partial_join partial_join o1 o2 = match o1, o2 with | None, _ -> o2 | _, None -> o1 | Some x1, Some x2 -> partial_join x1 x2 let const_partial_join c1 c2 = let is_int = function Const.Cint _ -> true | _ -> false in if Const.equal c1 c2 then Exp.Const c1 else if Const.kind_equal c1 c2 && not (is_int c1) then (L.d_strln "failure reason 18"; raise IList.Fail) else if !Config.abs_val >= 2 then FreshVarExp.get_fresh_exp (Exp.Const c1) (Exp.Const c2) else (L.d_strln "failure reason 19"; raise IList.Fail) let rec exp_partial_join (e1: Exp.t) (e2: Exp.t) : Exp.t = (* L.d_str "exp_partial_join "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *) match e1, e2 with | Exp.Var id1, Exp.Var id2 -> ident_partial_join id1 id2 | Exp.Var id, Exp.Const _ | Exp.Const _, Exp.Var id -> if Ident.is_normal id then (L.d_strln "failure reason 20"; raise IList.Fail) else Rename.extend e1 e2 Rename.ExtFresh | Exp.Const c1, Exp.Const c2 -> const_partial_join c1 c2 | Exp.Var id, Exp.Lvar _ | Exp.Lvar _, Exp.Var id -> if Ident.is_normal id then (L.d_strln "failure reason 21"; raise IList.Fail) else Rename.extend e1 e2 Rename.ExtFresh | Exp.BinOp(Binop.PlusA, Exp.Var id1, Exp.Const _), Exp.Var id2 | Exp.Var id1, Exp.BinOp(Binop.PlusA, Exp.Var id2, Exp.Const _) when ident_same_kind_primed_footprint id1 id2 -> Rename.extend e1 e2 Rename.ExtFresh | Exp.BinOp(Binop.PlusA, Exp.Var id1, Exp.Const (Const.Cint c1)), Exp.Const (Const.Cint c2) when can_rename id1 -> let c2' = c2 -- c1 in let e_res = Rename.extend (Exp.Var id1) (Exp.int c2') Rename.ExtFresh in Exp.BinOp(Binop.PlusA, e_res, Exp.int c1) | Exp.Const (Const.Cint c1), Exp.BinOp(Binop.PlusA, Exp.Var id2, Exp.Const (Const.Cint c2)) when can_rename id2 -> let c1' = c1 -- c2 in let e_res = Rename.extend (Exp.int c1') (Exp.Var id2) Rename.ExtFresh in Exp.BinOp(Binop.PlusA, e_res, Exp.int c2) | Exp.Cast(t1, e1), Exp.Cast(t2, e2) -> if not (Typ.equal t1 t2) then (L.d_strln "failure reason 22"; raise IList.Fail) else let e1'' = exp_partial_join e1 e2 in Exp.Cast (t1, e1'') | Exp.UnOp(unop1, e1, topt1), Exp.UnOp(unop2, e2, _) -> if not (Unop.equal unop1 unop2) then (L.d_strln "failure reason 23"; raise IList.Fail) else Exp.UnOp (unop1, exp_partial_join e1 e2, topt1) (* should be topt1 = topt2 *) | Exp.BinOp(Binop.PlusPI, e1, e1'), Exp.BinOp(Binop.PlusPI, e2, e2') -> let e1'' = exp_partial_join e1 e2 in let e2'' = match e1', e2' with | Exp.Const _, Exp.Const _ -> exp_partial_join e1' e2' | _ -> FreshVarExp.get_fresh_exp e1 e2 in Exp.BinOp(Binop.PlusPI, e1'', e2'') | Exp.BinOp(binop1, e1, e1'), Exp.BinOp(binop2, e2, e2') -> if not (Binop.equal binop1 binop2) then (L.d_strln "failure reason 24"; raise IList.Fail) else let e1'' = exp_partial_join e1 e2 in let e2'' = exp_partial_join e1' e2' in Exp.BinOp(binop1, e1'', e2'') | Exp.Lvar(pvar1), Exp.Lvar(pvar2) -> if not (Pvar.equal pvar1 pvar2) then (L.d_strln "failure reason 25"; raise IList.Fail) else e1 | Exp.Lfield(e1, f1, t1), Exp.Lfield(e2, f2, _) -> if not (Ident.fieldname_equal f1 f2) then (L.d_strln "failure reason 26"; raise IList.Fail) else Exp.Lfield(exp_partial_join e1 e2, f1, t1) (* should be t1 = t2 *) | Exp.Lindex(e1, e1'), Exp.Lindex(e2, e2') -> let e1'' = exp_partial_join e1 e2 in let e2'' = exp_partial_join e1' e2' in Exp.Lindex(e1'', e2'') | Exp.Sizeof (t1, len1, st1), Exp.Sizeof (t2, len2, st2) -> Exp.Sizeof (typ_partial_join t1 t2, dynamic_length_partial_join len1 len2, Subtype.join st1 st2) | _ -> L.d_str "exp_partial_join no match "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); raise IList.Fail and length_partial_join len1 len2 = match len1, len2 with | Exp.BinOp(Binop.PlusA, e1, Exp.Const c1), Exp.BinOp(Binop.PlusA, e2, Exp.Const c2) -> let e' = exp_partial_join e1 e2 in let c' = exp_partial_join (Exp.Const c1) (Exp.Const c2) in Exp.BinOp (Binop.PlusA, e', c') | Exp.BinOp(Binop.PlusA, _, _), Exp.BinOp(Binop.PlusA, _, _) -> Rename.extend len1 len2 Rename.ExtFresh | Exp.Var id1, Exp.Var id2 when Ident.equal id1 id2 -> len1 | _ -> exp_partial_join len1 len2 and static_length_partial_join l1 l2 = option_partial_join (fun len1 len2 -> if IntLit.eq len1 len2 then Some len1 else None) l1 l2 and dynamic_length_partial_join l1 l2 = option_partial_join (fun len1 len2 -> Some (length_partial_join len1 len2)) l1 l2 and typ_partial_join t1 t2 = match t1, t2 with | Typ.Tptr (t1, pk1), Typ.Tptr (t2, pk2) when Typ.ptr_kind_compare pk1 pk2 = 0 -> Typ.Tptr (typ_partial_join t1 t2, pk1) | Typ.Tarray (typ1, len1), Typ.Tarray (typ2, len2) -> let t = typ_partial_join typ1 typ2 in let len = static_length_partial_join len1 len2 in Typ.Tarray (t, len) | _ when Typ.equal t1 t2 -> t1 (* common case *) | _ -> L.d_str "typ_partial_join no match "; Typ.d_full t1; L.d_str " "; Typ.d_full t2; L.d_ln (); raise IList.Fail let rec exp_partial_meet (e1: Exp.t) (e2: Exp.t) : Exp.t = match e1, e2 with | Exp.Var id1, Exp.Var id2 -> ident_partial_meet id1 id2 | Exp.Var id, Exp.Const _ -> if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault(e2)) else (L.d_strln "failure reason 27"; raise IList.Fail) | Exp.Const _, Exp.Var id -> if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault(e1)) else (L.d_strln "failure reason 28"; raise IList.Fail) | Exp.Const c1, Exp.Const c2 -> if (Const.equal c1 c2) then e1 else (L.d_strln "failure reason 29"; raise IList.Fail) | Exp.Cast(t1, e1), Exp.Cast(t2, e2) -> if not (Typ.equal t1 t2) then (L.d_strln "failure reason 30"; raise IList.Fail) else let e1'' = exp_partial_meet e1 e2 in Exp.Cast (t1, e1'') | Exp.UnOp(unop1, e1, topt1), Exp.UnOp(unop2, e2, _) -> if not (Unop.equal unop1 unop2) then (L.d_strln "failure reason 31"; raise IList.Fail) else Exp.UnOp (unop1, exp_partial_meet e1 e2, topt1) (* should be topt1 = topt2 *) | Exp.BinOp(binop1, e1, e1'), Exp.BinOp(binop2, e2, e2') -> if not (Binop.equal binop1 binop2) then (L.d_strln "failure reason 32"; raise IList.Fail) else let e1'' = exp_partial_meet e1 e2 in let e2'' = exp_partial_meet e1' e2' in Exp.BinOp(binop1, e1'', e2'') | Exp.Var id, Exp.Lvar _ -> if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault(e2)) else (L.d_strln "failure reason 33"; raise IList.Fail) | Exp.Lvar _, Exp.Var id -> if not (Ident.is_normal id) then Rename.extend e1 e2 (Rename.ExtDefault(e1)) else (L.d_strln "failure reason 34"; raise IList.Fail) | Exp.Lvar(pvar1), Exp.Lvar(pvar2) -> if not (Pvar.equal pvar1 pvar2) then (L.d_strln "failure reason 35"; raise IList.Fail) else e1 | Exp.Lfield(e1, f1, t1), Exp.Lfield(e2, f2, _) -> if not (Ident.fieldname_equal f1 f2) then (L.d_strln "failure reason 36"; raise IList.Fail) else Exp.Lfield(exp_partial_meet e1 e2, f1, t1) (* should be t1 = t2 *) | Exp.Lindex(e1, e1'), Exp.Lindex(e2, e2') -> let e1'' = exp_partial_meet e1 e2 in let e2'' = exp_partial_meet e1' e2' in Exp.Lindex(e1'', e2'') | _ -> (L.d_strln "failure reason 37"; raise IList.Fail) let exp_list_partial_join = IList.map2 exp_partial_join let exp_list_partial_meet = IList.map2 exp_partial_meet (** {2 Join and Meet for Strexp} *) let rec strexp_partial_join mode (strexp1: Sil.strexp) (strexp2: Sil.strexp) : Sil.strexp = let rec f_fld_se_list inst mode acc fld_se_list1 fld_se_list2 = match fld_se_list1, fld_se_list2 with | [], [] -> Sil.Estruct (IList.rev acc, inst) | [], _ | _, [] -> begin match mode with | JoinState.Pre -> (L.d_strln "failure reason 42"; raise IList.Fail) | JoinState.Post -> Sil.Estruct (IList.rev acc, inst) end | (fld1, se1):: fld_se_list1', (fld2, se2):: fld_se_list2' -> let comparison = Ident.fieldname_compare fld1 fld2 in if comparison = 0 then let strexp' = strexp_partial_join mode se1 se2 in let fld_se_list_new = (fld1, strexp') :: acc in f_fld_se_list inst mode fld_se_list_new fld_se_list1' fld_se_list2' else begin match mode with | JoinState.Pre -> (L.d_strln "failure reason 43"; raise IList.Fail) | JoinState.Post -> if comparison < 0 then begin f_fld_se_list inst mode acc fld_se_list1' fld_se_list2 end else if comparison > 0 then begin f_fld_se_list inst mode acc fld_se_list1 fld_se_list2' end else assert false (* This case should not happen. *) end in let rec f_idx_se_list inst len idx_se_list_acc idx_se_list1 idx_se_list2 = match idx_se_list1, idx_se_list2 with | [], [] -> Sil.Earray (len, IList.rev idx_se_list_acc, inst) | [], _ | _, [] -> begin match mode with | JoinState.Pre -> (L.d_strln "failure reason 44"; raise IList.Fail) | JoinState.Post -> Sil.Earray (len, IList.rev idx_se_list_acc, inst) end | (idx1, se1):: idx_se_list1', (idx2, se2):: idx_se_list2' -> let idx = exp_partial_join idx1 idx2 in let strexp' = strexp_partial_join mode se1 se2 in let idx_se_list_new = (idx, strexp') :: idx_se_list_acc in f_idx_se_list inst len idx_se_list_new idx_se_list1' idx_se_list2' in match strexp1, strexp2 with | Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) -> Sil.Eexp (exp_partial_join e1 e2, Sil.inst_partial_join inst1 inst2) | Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) -> let inst = Sil.inst_partial_join inst1 inst2 in f_fld_se_list inst mode [] fld_se_list1 fld_se_list2 | Sil.Earray (len1, idx_se_list1, inst1), Sil.Earray (len2, idx_se_list2, inst2) -> let len = length_partial_join len1 len2 in let inst = Sil.inst_partial_join inst1 inst2 in f_idx_se_list inst len [] idx_se_list1 idx_se_list2 | _ -> L.d_strln "no match in strexp_partial_join"; raise IList.Fail let rec strexp_partial_meet (strexp1: Sil.strexp) (strexp2: Sil.strexp) : Sil.strexp = let construct side rev_list ref_list = let construct_offset_se (off, se) = (off, strexp_construct_fresh side se) in let acc = IList.map construct_offset_se ref_list in IList.rev_with_acc acc rev_list in let rec f_fld_se_list inst acc fld_se_list1 fld_se_list2 = match fld_se_list1, fld_se_list2 with | [], [] -> Sil.Estruct (IList.rev acc, inst) | [], _ -> Sil.Estruct (construct Rhs acc fld_se_list2, inst) | _, [] -> Sil.Estruct (construct Lhs acc fld_se_list1, inst) | (fld1, se1):: fld_se_list1', (fld2, se2):: fld_se_list2' -> let comparison = Ident.fieldname_compare fld1 fld2 in if comparison < 0 then let se' = strexp_construct_fresh Lhs se1 in let acc_new = (fld1, se'):: acc in f_fld_se_list inst acc_new fld_se_list1' fld_se_list2 else if comparison > 0 then let se' = strexp_construct_fresh Rhs se2 in let acc_new = (fld2, se'):: acc in f_fld_se_list inst acc_new fld_se_list1 fld_se_list2' else let strexp' = strexp_partial_meet se1 se2 in let acc_new = (fld1, strexp') :: acc in f_fld_se_list inst acc_new fld_se_list1' fld_se_list2' in let rec f_idx_se_list inst len acc idx_se_list1 idx_se_list2 = match idx_se_list1, idx_se_list2 with | [],[] -> Sil.Earray (len, IList.rev acc, inst) | [], _ -> Sil.Earray (len, construct Rhs acc idx_se_list2, inst) | _, [] -> Sil.Earray (len, construct Lhs acc idx_se_list1, inst) | (idx1, se1):: idx_se_list1', (idx2, se2):: idx_se_list2' -> let idx = exp_partial_meet idx1 idx2 in let se' = strexp_partial_meet se1 se2 in let acc_new = (idx, se') :: acc in f_idx_se_list inst len acc_new idx_se_list1' idx_se_list2' in match strexp1, strexp2 with | Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) -> Sil.Eexp (exp_partial_meet e1 e2, Sil.inst_partial_meet inst1 inst2) | Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) -> let inst = Sil.inst_partial_meet inst1 inst2 in f_fld_se_list inst [] fld_se_list1 fld_se_list2 | Sil.Earray (len1, idx_se_list1, inst1), Sil.Earray (len2, idx_se_list2, inst2) when Exp.equal len1 len2 -> let inst = Sil.inst_partial_meet inst1 inst2 in f_idx_se_list inst len1 [] idx_se_list1 idx_se_list2 | _ -> (L.d_strln "failure reason 52"; raise IList.Fail) (** {2 Join and Meet for kind, hpara, hpara_dll} *) let kind_join k1 k2 = match k1, k2 with | Sil.Lseg_PE, _ -> Sil.Lseg_PE | _, Sil.Lseg_PE -> Sil.Lseg_PE | Sil.Lseg_NE, Sil.Lseg_NE -> Sil.Lseg_NE let kind_meet k1 k2 = match k1, k2 with | Sil.Lseg_NE, _ -> Sil.Lseg_NE | _, Sil.Lseg_NE -> Sil.Lseg_NE | Sil.Lseg_PE, Sil.Lseg_PE -> Sil.Lseg_PE let hpara_partial_join tenv (hpara1: Sil.hpara) (hpara2: Sil.hpara) : Sil.hpara = if Match.hpara_match_with_impl tenv true hpara2 hpara1 then hpara1 else if Match.hpara_match_with_impl tenv true hpara1 hpara2 then hpara2 else (L.d_strln "failure reason 53"; raise IList.Fail) let hpara_partial_meet tenv (hpara1: Sil.hpara) (hpara2: Sil.hpara) : Sil.hpara = if Match.hpara_match_with_impl tenv true hpara2 hpara1 then hpara2 else if Match.hpara_match_with_impl tenv true hpara1 hpara2 then hpara1 else (L.d_strln "failure reason 54"; raise IList.Fail) let hpara_dll_partial_join tenv (hpara1: Sil.hpara_dll) (hpara2: Sil.hpara_dll) : Sil.hpara_dll = if Match.hpara_dll_match_with_impl tenv true hpara2 hpara1 then hpara1 else if Match.hpara_dll_match_with_impl tenv true hpara1 hpara2 then hpara2 else (L.d_strln "failure reason 55"; raise IList.Fail) let hpara_dll_partial_meet tenv (hpara1: Sil.hpara_dll) (hpara2: Sil.hpara_dll) : Sil.hpara_dll = if Match.hpara_dll_match_with_impl tenv true hpara2 hpara1 then hpara2 else if Match.hpara_dll_match_with_impl tenv true hpara1 hpara2 then hpara1 else (L.d_strln "failure reason 56"; raise IList.Fail) (** {2 Join and Meet for hpred} *) let hpred_partial_join tenv mode (todo: Exp.t * Exp.t * Exp.t) (hpred1: Sil.hpred) (hpred2: Sil.hpred) : Sil.hpred = let e1, e2, e = todo in match hpred1, hpred2 with | Sil.Hpointsto (_, se1, te1), Sil.Hpointsto (_, se2, te2) -> let te = exp_partial_join te1 te2 in Prop.mk_ptsto tenv e (strexp_partial_join mode se1 se2) te | Sil.Hlseg (k1, hpara1, _, next1, shared1), Sil.Hlseg (k2, hpara2, _, next2, shared2) -> let hpara' = hpara_partial_join tenv hpara1 hpara2 in let next' = exp_partial_join next1 next2 in let shared' = exp_list_partial_join shared1 shared2 in Prop.mk_lseg tenv (kind_join k1 k2) hpara' e next' shared' | Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1), Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) -> let fwd1 = Exp.equal e1 iF1 in let fwd2 = Exp.equal e2 iF2 in let hpara' = hpara_dll_partial_join tenv para1 para2 in let iF', iB' = if (fwd1 && fwd2) then (e, exp_partial_join iB1 iB2) else if (not fwd1 && not fwd2) then (exp_partial_join iF1 iF2, e) else (L.d_strln "failure reason 57"; raise IList.Fail) in let oF' = exp_partial_join oF1 oF2 in let oB' = exp_partial_join oB1 oB2 in let shared' = exp_list_partial_join shared1 shared2 in Prop.mk_dllseg tenv (kind_join k1 k2) hpara' iF' oB' oF' iB' shared' | _ -> assert false let hpred_partial_meet tenv (todo: Exp.t * Exp.t * Exp.t) (hpred1: Sil.hpred) (hpred2: Sil.hpred) : Sil.hpred = let e1, e2, e = todo in match hpred1, hpred2 with | Sil.Hpointsto (_, se1, te1), Sil.Hpointsto (_, se2, te2) when Exp.equal te1 te2 -> Prop.mk_ptsto tenv e (strexp_partial_meet se1 se2) te1 | Sil.Hpointsto _, _ | _, Sil.Hpointsto _ -> (L.d_strln "failure reason 58"; raise IList.Fail) | Sil.Hlseg (k1, hpara1, _, next1, shared1), Sil.Hlseg (k2, hpara2, _, next2, shared2) -> let hpara' = hpara_partial_meet tenv hpara1 hpara2 in let next' = exp_partial_meet next1 next2 in let shared' = exp_list_partial_meet shared1 shared2 in Prop.mk_lseg tenv (kind_meet k1 k2) hpara' e next' shared' | Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1), Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) -> let fwd1 = Exp.equal e1 iF1 in let fwd2 = Exp.equal e2 iF2 in let hpara' = hpara_dll_partial_meet tenv para1 para2 in let iF', iB' = if (fwd1 && fwd2) then (e, exp_partial_meet iB1 iB2) else if (not fwd1 && not fwd2) then (exp_partial_meet iF1 iF2, e) else (L.d_strln "failure reason 59"; raise IList.Fail) in let oF' = exp_partial_meet oF1 oF2 in let oB' = exp_partial_meet oB1 oB2 in let shared' = exp_list_partial_meet shared1 shared2 in Prop.mk_dllseg tenv (kind_meet k1 k2) hpara' iF' oB' oF' iB' shared' | _ -> assert false (** {2 Join and Meet for Sigma} *) let find_hpred_by_address tenv (e: Exp.t) (sigma: Prop.sigma) : Sil.hpred option * Prop.sigma = let is_root_for_e e' = match (Prover.is_root tenv Prop.prop_emp e' e) with | None -> false | Some _ -> true in let contains_e = function | Sil.Hpointsto (e', _, _) -> is_root_for_e e' | Sil.Hlseg (_, _, e', _, _) -> is_root_for_e e' | Sil.Hdllseg (_, _, iF, _, _, iB, _) -> is_root_for_e iF || is_root_for_e iB in let rec f sigma_acc = function | [] -> None, sigma | hpred:: sigma -> if contains_e hpred then Some hpred, (IList.rev sigma_acc) @ sigma else f (hpred:: sigma_acc) sigma in f [] sigma let same_pred (hpred1: Sil.hpred) (hpred2: Sil.hpred) : bool = match hpred1, hpred2 with | Sil.Hpointsto _, Sil.Hpointsto _ -> true | Sil.Hlseg _, Sil.Hlseg _ -> true | Sil.Hdllseg _, Sil.Hdllseg _ -> true | _ -> false (* check that applying renaming to the lhs / rhs of [sigma_new] * gives [sigma] and that the renaming is injective *) let sigma_renaming_check (lhs: side) (sigma: Prop.sigma) (sigma_new: Prop.sigma) = (* apply the lhs / rhs of the renaming to sigma, * and check that the renaming of primed vars is injective *) let fav_sigma = Prop.sigma_fav sigma_new in let sub = Rename.to_subst_proj lhs fav_sigma in let sigma' = Prop.sigma_sub sub sigma_new in sigma_equal sigma sigma' let sigma_renaming_check_lhs = sigma_renaming_check Lhs let sigma_renaming_check_rhs = sigma_renaming_check Rhs let rec sigma_partial_join' tenv mode (sigma_acc: Prop.sigma) (sigma1_in: Prop.sigma) (sigma2_in: Prop.sigma) : (Prop.sigma * Prop.sigma * Prop.sigma) = let lookup_and_expand side e e' = match (Rename.get_others side e, side) with | None, _ -> (L.d_strln "failure reason 60"; raise IList.Fail) | Some(e_res, e_op), Lhs -> (e_res, exp_partial_join e' e_op) | Some(e_res, e_op), Rhs -> (e_res, exp_partial_join e_op e') in let join_list_and_non side root' hlseg e opposite = match hlseg with | Sil.Hlseg (_, hpara, root, next, shared) -> let next' = do_side side exp_partial_join next opposite in let shared' = Rename.lookup_list side shared in CheckJoin.add side root next; Sil.Hlseg (Sil.Lseg_PE, hpara, root', next', shared') | Sil.Hdllseg (_, hpara, iF, oB, oF, iB, shared) when Exp.equal iF e -> let oF' = do_side side exp_partial_join oF opposite in let shared' = Rename.lookup_list side shared in let oB', iB' = lookup_and_expand side oB iB in (* let oB' = Rename.lookup side oB in let iB' = Rename.lookup side iB in *) CheckJoin.add side iF oF; CheckJoin.add side oB iB; Sil.Hdllseg (Sil.Lseg_PE, hpara, root', oB', oF', iB', shared') | Sil.Hdllseg (_, hpara, iF, oB, oF, iB, shared) when Exp.equal iB e -> let oB' = do_side side exp_partial_join oB opposite in let shared' = Rename.lookup_list side shared in let oF', iF' = lookup_and_expand side oF iF in (* let oF' = Rename.lookup side oF in let iF' = Rename.lookup side iF in *) CheckJoin.add side iF oF; CheckJoin.add side oB iB; Sil.Hdllseg (Sil.Lseg_PE, hpara, iF', oB', oF', root', shared') | _ -> assert false in let update_list side lseg root' = match lseg with | Sil.Hlseg (k, hpara, _, next, shared) -> let next' = Rename.lookup side next and shared' = Rename.lookup_list_todo side shared in Sil.Hlseg (k, hpara, root', next', shared') | _ -> assert false in let update_dllseg side dllseg iF iB = match dllseg with | Sil.Hdllseg (k, hpara, _, oB, oF, _, shared) -> let oB' = Rename.lookup side oB and oF' = Rename.lookup side oF and shared' = Rename.lookup_list_todo side shared in Sil.Hdllseg (k, hpara, iF, oB', oF', iB, shared') | _ -> assert false in (* Drop the part of 'other' sigma corresponding to 'target' sigma if possible. 'side' describes that target is Lhs or Rhs. 'todo' describes the start point. *) let cut_sigma side todo (target: Prop.sigma) (other: Prop.sigma) = let list_is_empty l = if l != [] then (L.d_strln "failure reason 61"; raise IList.Fail) in let x = Todo.take () in Todo.push todo; let res = match side with | Lhs -> let res, target', other' = sigma_partial_join' tenv mode [] target other in list_is_empty target'; sigma_renaming_check_lhs target res; other' | Rhs -> let res, other', target' = sigma_partial_join' tenv mode [] other target in list_is_empty target'; sigma_renaming_check_rhs target res; other' in Todo.set x; res in let cut_lseg side todo lseg sigma = match lseg with | Sil.Hlseg (_, hpara, root, next, shared) -> let _, sigma_lseg = Sil.hpara_instantiate hpara root next shared in cut_sigma side todo sigma_lseg sigma | _ -> assert false in let cut_dllseg side todo root lseg sigma = match lseg with | Sil.Hdllseg (_, hpara, _, oB, oF, _, shared) -> let _, sigma_dllseg = Sil.hpara_dll_instantiate hpara root oB oF shared in cut_sigma side todo sigma_dllseg sigma | _ -> assert false in try let todo_curr = Todo.pop () in let e1, e2, e = todo_curr in if Config.trace_join then begin L.d_strln ".... sigma_partial_join' ...."; L.d_str "TODO: "; Sil.d_exp e1; L.d_str ","; Sil.d_exp e2; L.d_str ","; Sil.d_exp e; L.d_ln (); L.d_strln "SIGMA1 ="; Prop.d_sigma sigma1_in; L.d_ln (); L.d_strln "SIGMA2 ="; Prop.d_sigma sigma2_in; L.d_ln (); L.d_ln () end; let hpred_opt1, sigma1 = find_hpred_by_address tenv e1 sigma1_in in let hpred_opt2, sigma2 = find_hpred_by_address tenv e2 sigma2_in in match hpred_opt1, hpred_opt2 with | None, None -> sigma_partial_join' tenv mode sigma_acc sigma1 sigma2 | Some (Sil.Hlseg (k, _, _, _, _) as lseg), None | Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg), None -> if (not Config.nelseg) || (Sil.lseg_kind_equal k Sil.Lseg_PE) then let sigma_acc' = join_list_and_non Lhs e lseg e1 e2 :: sigma_acc in sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2 else (L.d_strln "failure reason 62"; raise IList.Fail) | None, Some (Sil.Hlseg (k, _, _, _, _) as lseg) | None, Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg) -> if (not Config.nelseg) || (Sil.lseg_kind_equal k Sil.Lseg_PE) then let sigma_acc' = join_list_and_non Rhs e lseg e2 e1 :: sigma_acc in sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2 else (L.d_strln "failure reason 63"; raise IList.Fail) | None, _ | _, None -> (L.d_strln "failure reason 64"; raise IList.Fail) | Some (hpred1), Some (hpred2) when same_pred hpred1 hpred2 -> let hpred_res1 = hpred_partial_join tenv mode todo_curr hpred1 hpred2 in sigma_partial_join' tenv mode (hpred_res1:: sigma_acc) sigma1 sigma2 | Some (Sil.Hlseg _ as lseg), Some (hpred2) -> let sigma2' = cut_lseg Lhs todo_curr lseg (hpred2:: sigma2) in let sigma_acc' = update_list Lhs lseg e :: sigma_acc in sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2' | Some (hpred1), Some (Sil.Hlseg _ as lseg) -> let sigma1' = cut_lseg Rhs todo_curr lseg (hpred1:: sigma1) in let sigma_acc' = update_list Rhs lseg e :: sigma_acc in sigma_partial_join' tenv mode sigma_acc' sigma1' sigma2 | Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some (hpred2) when Exp.equal e1 iF1 -> let iB_res = exp_partial_join iB1 e2 in let sigma2' = cut_dllseg Lhs todo_curr iF1 dllseg (hpred2:: sigma2) in let sigma_acc' = update_dllseg Lhs dllseg e iB_res :: sigma_acc in CheckJoin.add Lhs iF1 iB1; (* add equality iF1=iB1 *) sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2' | Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some (hpred2) (* when Exp.equal e1 iB1 *) -> let iF_res = exp_partial_join iF1 e2 in let sigma2' = cut_dllseg Lhs todo_curr iB1 dllseg (hpred2:: sigma2) in let sigma_acc' = update_dllseg Lhs dllseg iF_res e :: sigma_acc in CheckJoin.add Lhs iF1 iB1; (* add equality iF1=iB1 *) sigma_partial_join' tenv mode sigma_acc' sigma1 sigma2' | Some (hpred1), Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg) when Exp.equal e2 iF2 -> let iB_res = exp_partial_join e1 iB2 in let sigma1' = cut_dllseg Rhs todo_curr iF2 dllseg (hpred1:: sigma1) in let sigma_acc' = update_dllseg Rhs dllseg e iB_res :: sigma_acc in CheckJoin.add Rhs iF2 iB2; (* add equality iF2=iB2 *) sigma_partial_join' tenv mode sigma_acc' sigma1' sigma2 | Some (hpred1), Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg) -> let iF_res = exp_partial_join e1 iF2 in let sigma1' = cut_dllseg Rhs todo_curr iB2 dllseg (hpred1:: sigma1) in let sigma_acc' = update_dllseg Rhs dllseg iF_res e :: sigma_acc in CheckJoin.add Rhs iF2 iB2; (* add equality iF2=iB2 *) sigma_partial_join' tenv mode sigma_acc' sigma1' sigma2 | Some (Sil.Hpointsto _), Some (Sil.Hpointsto _) -> assert false (* Should be handled by a guarded case *) with Todo.Empty -> match sigma1_in, sigma2_in with | _:: _, _:: _ -> L.d_strln "todo is empty, but the sigmas are not"; raise IList.Fail | _ -> sigma_acc, sigma1_in, sigma2_in let sigma_partial_join tenv mode (sigma1: Prop.sigma) (sigma2: Prop.sigma) : (Prop.sigma * Prop.sigma * Prop.sigma) = CheckJoin.init mode sigma1 sigma2; let lost_little = CheckJoin.lost_little in let s1, s2, s3 = sigma_partial_join' tenv mode [] sigma1 sigma2 in try if Rename.check lost_little then (CheckJoin.final (); (s1, s2, s3)) else begin L.d_strln "failed Rename.check"; CheckJoin.final (); raise IList.Fail end with | exn -> (CheckJoin.final (); raise exn) let rec sigma_partial_meet' tenv (sigma_acc: Prop.sigma) (sigma1_in: Prop.sigma) (sigma2_in: Prop.sigma) : Prop.sigma = try let todo_curr = Todo.pop () in let e1, e2, e = todo_curr in L.d_strln ".... sigma_partial_meet' ...."; L.d_str "TODO: "; Sil.d_exp e1; L.d_str ","; Sil.d_exp e2; L.d_str ","; Sil.d_exp e; L.d_ln (); L.d_str "PROP1="; Prop.d_sigma sigma1_in; L.d_ln (); L.d_str "PROP2="; Prop.d_sigma sigma2_in; L.d_ln (); L.d_ln (); let hpred_opt1, sigma1 = find_hpred_by_address tenv e1 sigma1_in in let hpred_opt2, sigma2 = find_hpred_by_address tenv e2 sigma2_in in match hpred_opt1, hpred_opt2 with | None, None -> sigma_partial_meet' tenv sigma_acc sigma1 sigma2 | Some hpred, None -> let hpred' = hpred_construct_fresh Lhs hpred in let sigma_acc' = hpred' :: sigma_acc in sigma_partial_meet' tenv sigma_acc' sigma1 sigma2 | None, Some hpred -> let hpred' = hpred_construct_fresh Rhs hpred in let sigma_acc' = hpred' :: sigma_acc in sigma_partial_meet' tenv sigma_acc' sigma1 sigma2 | Some (hpred1), Some (hpred2) when same_pred hpred1 hpred2 -> let hpred' = hpred_partial_meet tenv todo_curr hpred1 hpred2 in sigma_partial_meet' tenv (hpred':: sigma_acc) sigma1 sigma2 | Some _, Some _ -> (L.d_strln "failure reason 65"; raise IList.Fail) with Todo.Empty -> match sigma1_in, sigma2_in with | [], [] -> sigma_acc | _, _ -> L.d_strln "todo is empty, but the sigmas are not"; raise IList.Fail let sigma_partial_meet tenv (sigma1: Prop.sigma) (sigma2: Prop.sigma) : Prop.sigma = sigma_partial_meet' tenv [] sigma1 sigma2 let widening_top = (* nearly max_int but not so close to overflow *) IntLit.of_int64 Int64.max_int -- IntLit.of_int 1000 let widening_bottom = (* nearly min_int but not so close to underflow *) IntLit.of_int64 Int64.min_int ++ IntLit.of_int 1000 (** {2 Join and Meet for Pi} *) let pi_partial_join tenv mode (ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t) (pi1: Prop.pi) (pi2: Prop.pi) : Prop.pi = let exp_is_const = function (* | Exp.Var id -> is_normal id *) | Exp.Const _ -> true (* | Exp.Lvar _ -> true *) | _ -> false in let get_array_len prop = (* find some array length in the prop, to be used as heuritic for upper bound in widening *) let len_list = ref [] in let do_hpred = function | Sil.Hpointsto (_, Sil.Earray (Exp.Const (Const.Cint n), _, _), _) -> (if IntLit.geq n IntLit.one then len_list := n :: !len_list) | _ -> () in IList.iter do_hpred prop.Prop.sigma; !len_list in let bounds = let bounds1 = get_array_len ep1 in let bounds2 = get_array_len ep2 in let bounds_sorted = IList.sort IntLit.compare_value (bounds1@bounds2) in IList.rev (IList.remove_duplicates IntLit.compare_value bounds_sorted) in let widening_atom a = (* widening heuristic for upper bound: take the length of some array, -2 and -1 *) match Prop.atom_exp_le_const a, bounds with | Some (e, n), len :: _ -> let first_try = IntLit.sub len IntLit.one in let second_try = IntLit.sub len IntLit.two in let bound = if IntLit.leq n first_try then if IntLit.leq n second_try then second_try else first_try else widening_top in let a' = Prop.mk_inequality tenv (Exp.BinOp(Binop.Le, e, Exp.int bound)) in Some a' | Some (e, _), [] -> let bound = widening_top in let a' = Prop.mk_inequality tenv (Exp.BinOp(Binop.Le, e, Exp.int bound)) in Some a' | _ -> begin match Prop.atom_const_lt_exp a with | None -> None | Some (n, e) -> let bound = if IntLit.leq IntLit.minus_one n then IntLit.minus_one else widening_bottom in let a' = Prop.mk_inequality tenv (Exp.BinOp(Binop.Lt, Exp.int bound, e)) in Some a' end in let is_stronger_le e n a = match Prop.atom_exp_le_const a with | None -> false | Some (e', n') -> Exp.equal e e' && IntLit.lt n' n in let is_stronger_lt n e a = match Prop.atom_const_lt_exp a with | None -> false | Some (n', e') -> Exp.equal e e' && IntLit.lt n n' in let join_atom_check_pre p a = (* check for atoms in pre mode: fail if the negation is implied by the other side *) let not_a = Prover.atom_negate tenv a in if (Prover.check_atom tenv p not_a) then (L.d_str "join_atom_check failed on "; Sil.d_atom a; L.d_ln (); raise IList.Fail) in let join_atom_check_attribute p a = (* check for attribute: fail if the attribute is not in the other side *) if not (Prover.check_atom tenv p a) then (L.d_str "join_atom_check_attribute failed on "; Sil.d_atom a; L.d_ln (); raise IList.Fail) in let join_atom side p_op pi_op a = (* try to find the atom corresponding to a on the other side, and check if it is implied *) match Rename.get_other_atoms tenv side a with | None -> None | Some (a_res, a_op) -> if mode = JoinState.Pre then join_atom_check_pre p_op a_op; if Attribute.is_pred a then join_atom_check_attribute p_op a_op; if not (Prover.check_atom tenv p_op a_op) then None else begin match Prop.atom_exp_le_const a_op with | None -> begin match Prop.atom_const_lt_exp a_op with | None -> Some a_res | Some (n, e) -> if IList.exists (is_stronger_lt n e) pi_op then (widening_atom a_res) else Some a_res end | Some (e, n) -> if IList.exists (is_stronger_le e n) pi_op then (widening_atom a_res) else Some a_res end in let handle_atom_with_widening len p_op pi_op atom_list a = (* find a join for the atom, if it fails apply widening heuristing and try again *) match join_atom len p_op pi_op a with | None -> (match widening_atom a with | None -> atom_list | Some a' -> (match join_atom len p_op pi_op a' with | None -> atom_list | Some a' -> a' :: atom_list)) | Some a' -> a' :: atom_list in let filter_atom = function | Sil.Aneq(e, e') | Sil.Aeq(e, e') when (exp_is_const e && exp_is_const e') -> true | Sil.Aneq(Exp.Var _, e') | Sil.Aneq(e', Exp.Var _) | Sil.Aeq(Exp.Var _, e') | Sil.Aeq(e', Exp.Var _) when (exp_is_const e') -> true | Sil.Aneq _ -> false | Sil.Aeq _ as e -> Prop.atom_is_inequality e | Sil.Apred (_, es) | Anpred (_, es) -> IList.for_all exp_is_const es in begin if Config.trace_join then begin L.d_str "pi1: "; Prop.d_pi pi1; L.d_ln (); L.d_str "pi2: "; Prop.d_pi pi2; L.d_ln () end; let atom_list1 = let p2 = Prop.normalize tenv ep2 in IList.fold_left (handle_atom_with_widening Lhs p2 pi2) [] pi1 in if Config.trace_join then (L.d_str "atom_list1: "; Prop.d_pi atom_list1; L.d_ln ()); let atom_list_combined = let p1 = Prop.normalize tenv ep1 in IList.fold_left (handle_atom_with_widening Rhs p1 pi1) atom_list1 pi2 in if Config.trace_join then (L.d_str "atom_list_combined: "; Prop.d_pi atom_list_combined; L.d_ln ()); let atom_list_filtered = IList.filter filter_atom atom_list_combined in if Config.trace_join then (L.d_str "atom_list_filtered: "; Prop.d_pi atom_list_filtered; L.d_ln ()); let atom_list_res = IList.rev atom_list_filtered in atom_list_res end let pi_partial_meet tenv (p: Prop.normal Prop.t) (ep1: 'a Prop.t) (ep2: 'b Prop.t) : Prop.normal Prop.t = let sub1 = Rename.to_subst_emb Lhs in let sub2 = Rename.to_subst_emb Rhs in let dom1 = Ident.idlist_to_idset (Sil.sub_domain sub1) in let dom2 = Ident.idlist_to_idset (Sil.sub_domain sub2) in let handle_atom sub dom atom = let fav_list = Sil.fav_to_list (Sil.atom_fav atom) in if IList.for_all (fun id -> Ident.IdentSet.mem id dom) fav_list then Sil.atom_sub sub atom else (L.d_str "handle_atom failed on "; Sil.d_atom atom; L.d_ln (); raise IList.Fail) in let f1 p' atom = Prop.prop_atom_and tenv p' (handle_atom sub1 dom1 atom) in let f2 p' atom = Prop.prop_atom_and tenv p' (handle_atom sub2 dom2 atom) in let pi1 = ep1.Prop.pi in let pi2 = ep2.Prop.pi in let p_pi1 = IList.fold_left f1 p pi1 in let p_pi2 = IList.fold_left f2 p_pi1 pi2 in if (Prover.check_inconsistency_base tenv p_pi2) then (L.d_strln "check_inconsistency_base failed"; raise IList.Fail) else p_pi2 (** {2 Join and Meet for Prop} *) let eprop_partial_meet tenv (ep1: 'a Prop.t) (ep2: 'b Prop.t) : 'c Prop.t = SymOp.pay(); (* pay one symop *) let sigma1 = ep1.Prop.sigma in let sigma2 = ep2.Prop.sigma in let es1 = sigma_get_start_lexps_sort sigma1 in let es2 = sigma_get_start_lexps_sort sigma2 in let es = IList.merge_sorted_nodup Exp.compare [] es1 es2 in let sub_check _ = let sub1 = ep1.Prop.sub in let sub2 = ep2.Prop.sub in let range1 = Sil.sub_range sub1 in let f e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in Sil.sub_equal sub1 sub2 && IList.for_all f range1 in if not (sub_check ()) then (L.d_strln "sub_check() failed"; raise IList.Fail) else begin let todos = IList.map (fun x -> (x, x, x)) es in IList.iter Todo.push todos; let sigma_new = sigma_partial_meet tenv sigma1 sigma2 in let ep = Prop.set ep1 ~sigma:sigma_new in let ep' = Prop.set ep ~pi:[] in let p' = Prop.normalize tenv ep' in let p'' = pi_partial_meet tenv p' ep1 ep2 in let res = Prop.prop_rename_primed_footprint_vars tenv p'' in res end let prop_partial_meet tenv p1 p2 = Rename.init (); FreshVarExp.init (); Todo.init (); try let res = eprop_partial_meet tenv p1 p2 in Rename.final (); FreshVarExp.final (); Todo.final (); Some res with exn -> begin Rename.final (); FreshVarExp.final (); Todo.final (); match exn with | IList.Fail -> None | _ -> raise exn end let eprop_partial_join' tenv mode (ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t) : Prop.normal Prop.t = SymOp.pay(); (* pay one symop *) let sigma1 = ep1.Prop.sigma in let sigma2 = ep2.Prop.sigma in let es1 = sigma_get_start_lexps_sort sigma1 in let es2 = sigma_get_start_lexps_sort sigma2 in let simple_check = IList.length es1 = IList.length es2 in let rec expensive_check es1' es2' = match (es1', es2') with | [], [] -> true | [], _:: _ | _:: _, [] -> false | e1:: es1'', e2:: es2'' -> Exp.equal e1 e2 && expensive_check es1'' es2'' in let sub_common, eqs_from_sub1, eqs_from_sub2 = let sub1 = ep1.Prop.sub in let sub2 = ep2.Prop.sub in let sub_common, sub1_only, sub2_only = Sil.sub_symmetric_difference sub1 sub2 in let sub_common_normal, sub_common_other = let f e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in Sil.sub_range_partition f sub_common in let eqs1, eqs2 = let sub_to_eqs sub = IList.map (fun (id, e) -> Sil.Aeq (Exp.Var id, e)) (Sil.sub_to_list sub) in let eqs1 = sub_to_eqs sub1_only @ sub_to_eqs sub_common_other in let eqs2 = sub_to_eqs sub2_only in (eqs1, eqs2) in (sub_common_normal, eqs1, eqs2) in if not (simple_check && expensive_check es1 es2) then begin if not simple_check then L.d_strln "simple_check failed" else L.d_strln "expensive_check failed"; raise IList.Fail end; let todos = IList.map (fun x -> (x, x, x)) es1 in IList.iter Todo.push todos; match sigma_partial_join tenv mode sigma1 sigma2 with | sigma_new, [], [] -> L.d_strln "sigma_partial_join succeeded"; let ep_sub = let ep = Prop.set ep1 ~pi:[] in Prop.set ep ~sub:sub_common in let p_sub_sigma = Prop.normalize tenv (Prop.set ep_sub ~sigma:sigma_new) in let p_sub_sigma_pi = let pi1 = ep1.Prop.pi @ eqs_from_sub1 in let pi2 = ep2.Prop.pi @ eqs_from_sub2 in let pi' = pi_partial_join tenv mode ep1 ep2 pi1 pi2 in L.d_strln "pi_partial_join succeeded"; let pi_from_fresh_vars = FreshVarExp.get_induced_pi tenv () in let pi_all = pi' @ pi_from_fresh_vars in IList.fold_left (Prop.prop_atom_and tenv) p_sub_sigma pi_all in p_sub_sigma_pi | _ -> L.d_strln "leftovers not empty"; raise IList.Fail let footprint_partial_join' tenv (p1: Prop.normal Prop.t) (p2: Prop.normal Prop.t) : Prop.normal Prop.t * Prop.normal Prop.t = if not !Config.footprint then p1, p2 else begin let fp1 = Prop.extract_footprint p1 in let fp2 = Prop.extract_footprint p2 in let efp = eprop_partial_join' tenv JoinState.Pre fp1 fp2 in let pi_fp = let pi_fp0 = Prop.get_pure efp in let f a = Sil.fav_for_all (Sil.atom_fav a) Ident.is_footprint in IList.filter f pi_fp0 in let sigma_fp = let sigma_fp0 = efp.Prop.sigma in let f a = Sil.fav_exists (Sil.hpred_fav a) (fun a -> not (Ident.is_footprint a)) in if IList.exists f sigma_fp0 then (L.d_strln "failure reason 66"; raise IList.Fail); sigma_fp0 in let ep1' = Prop.set p1 ~pi_fp ~sigma_fp in let ep2' = Prop.set p2 ~pi_fp ~sigma_fp in Prop.normalize tenv ep1', Prop.normalize tenv ep2' end let prop_partial_join pname tenv mode p1 p2 = let res_by_implication_only = if !Config.footprint then None else if Prover.check_implication pname tenv p1 (Prop.expose p2) then Some p2 else if Prover.check_implication pname tenv p2 (Prop.expose p1) then Some p1 else None in match res_by_implication_only with | None -> begin (if !Config.footprint then JoinState.set_footprint true); Rename.init (); FreshVarExp.init (); Todo.init (); try let p1', p2' = footprint_partial_join' tenv p1 p2 in let rename_footprint = Rename.reset () in Todo.reset rename_footprint; let res = Some (eprop_partial_join' tenv mode (Prop.expose p1') (Prop.expose p2')) in (if !Config.footprint then JoinState.set_footprint false); Rename.final (); FreshVarExp.final (); Todo.final (); res with exn -> begin Rename.final (); FreshVarExp.final (); Todo.final (); (if !Config.footprint then JoinState.set_footprint false); (match exn with IList.Fail -> None | _ -> raise exn) end end | Some _ -> res_by_implication_only let eprop_partial_join tenv mode (ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t) : Prop.normal Prop.t = Rename.init (); FreshVarExp.init (); Todo.init (); try let res = eprop_partial_join' tenv mode ep1 ep2 in Rename.final (); FreshVarExp.final (); Todo.final (); res with exn -> (Rename.final (); FreshVarExp.final (); Todo.final (); raise exn) (** {2 Join and Meet for Propset} *) let list_reduce name dd f list = let rec element_list_reduce acc (x, p1) = function | [] -> ((x, p1), IList.rev acc) | (y, p2):: ys -> begin L.d_strln ("COMBINE[" ^ name ^ "] ...."); L.d_str "ENTRY1: "; L.d_ln (); dd x; L.d_ln (); L.d_str "ENTRY2: "; L.d_ln (); dd y; L.d_ln (); L.d_ln (); match f x y with | None -> L.d_strln_color Red (".... COMBINE[" ^ name ^ "] FAILED ..."); element_list_reduce ((y, p2):: acc) (x, p1) ys | Some x' -> L.d_strln_color Green (".... COMBINE[" ^ name ^ "] SUCCEEDED ...."); L.d_strln "RESULT:"; dd x'; L.d_ln (); element_list_reduce acc (x', p1) ys end in let rec reduce acc = function | [] -> IList.rev acc | x:: xs -> let (x', xs') = element_list_reduce [] x xs in reduce (x':: acc) xs' in reduce [] list let pathset_collapse_impl pname tenv pset = let f x y = if Prover.check_implication pname tenv x (Prop.expose y) then Some y else if Prover.check_implication pname tenv y (Prop.expose x) then Some x else None in let plist = Paths.PathSet.elements pset in let plist' = list_reduce "JOIN_IMPL" Prop.d_prop f plist in Paths.PathSet.from_renamed_list plist' let jprop_partial_join tenv mode jp1 jp2 = let p1, p2 = Prop.expose (Specs.Jprop.to_prop jp1), Prop.expose (Specs.Jprop.to_prop jp2) in try let p = eprop_partial_join tenv mode p1 p2 in let p_renamed = Prop.prop_rename_primed_footprint_vars tenv p in Some (Specs.Jprop.Joined (0, p_renamed, jp1, jp2)) with IList.Fail -> None let jplist_collapse tenv mode jplist = let f = jprop_partial_join tenv mode in list_reduce "JOIN" Specs.Jprop.d_shallow f jplist (** Add identifiers to a list of jprops *) let jprop_list_add_ids jplist = let seq_number = ref 0 in let rec do_jprop = function | Specs.Jprop.Prop (_, p) -> incr seq_number; Specs.Jprop.Prop (!seq_number, p) | Specs.Jprop.Joined (_, p, jp1, jp2) -> let jp1' = do_jprop jp1 in let jp2' = do_jprop jp2 in incr seq_number; Specs.Jprop.Joined (!seq_number, p, jp1', jp2') in IList.map (fun (p, path) -> (do_jprop p, path)) jplist let proplist_collapse tenv mode plist = let jplist = IList.map (fun (p, path) -> (Specs.Jprop.Prop (0, p), path)) plist in let jplist_joined = jplist_collapse tenv mode (jplist_collapse tenv mode jplist) in jprop_list_add_ids jplist_joined let proplist_collapse_pre tenv plist = let plist' = IList.map (fun p -> (p, ())) plist in IList.map fst (proplist_collapse tenv JoinState.Pre plist') let pathset_collapse tenv pset = let plist = Paths.PathSet.elements pset in let plist' = proplist_collapse tenv JoinState.Post plist in Paths.PathSet.from_renamed_list (IList.map (fun (p, path) -> (Specs.Jprop.to_prop p, path)) plist') let join_time = ref 0.0 let pathset_join pname tenv (pset1: Paths.PathSet.t) (pset2: Paths.PathSet.t) : Paths.PathSet.t * Paths.PathSet.t = let mode = JoinState.Post in let initial_time = Unix.gettimeofday () in let pset_to_plist pset = let f_list p pa acc = (p, pa) :: acc in Paths.PathSet.fold f_list pset [] in let ppalist1 = pset_to_plist pset1 in let ppalist2 = pset_to_plist pset2 in let rec join_proppath_plist ppalist2_acc ((p2, pa2) as ppa2) = function | [] -> (ppa2, IList.rev ppalist2_acc) | ((p2', pa2') as ppa2') :: ppalist2_rest -> begin L.d_strln ".... JOIN ...."; L.d_strln "JOIN SYM HEAP1: "; Prop.d_prop p2; L.d_ln (); L.d_strln "JOIN SYM HEAP2: "; Prop.d_prop p2'; L.d_ln (); L.d_ln (); match prop_partial_join pname tenv mode p2 p2' with | None -> L.d_strln_color Red ".... JOIN FAILED ...."; L.d_ln (); join_proppath_plist (ppa2':: ppalist2_acc) ppa2 ppalist2_rest | Some p2'' -> L.d_strln_color Green ".... JOIN SUCCEEDED ...."; L.d_strln "RESULT SYM HEAP:"; Prop.d_prop p2''; L.d_ln (); L.d_ln (); join_proppath_plist ppalist2_acc (p2'', Paths.Path.join pa2 pa2') ppalist2_rest end in let rec join ppalist1_cur ppalist2_acc = function | [] -> (ppalist1_cur, ppalist2_acc) | ppa2:: ppalist2_rest -> let (ppa2', ppalist2_acc') = join_proppath_plist [] ppa2 ppalist2_acc in let (ppa2'', ppalist2_rest') = join_proppath_plist [] ppa2' ppalist2_rest in let (ppa2_new, ppalist1_cur') = join_proppath_plist [] ppa2'' ppalist1_cur in join ppalist1_cur' (ppa2_new:: ppalist2_acc') ppalist2_rest' in let _ppalist1_res, _ppalist2_res = join ppalist1 [] ppalist2 in let ren l = IList.map (fun (p, x) -> (Prop.prop_rename_primed_footprint_vars tenv p, x)) l in let ppalist1_res, ppalist2_res = ren _ppalist1_res, ren _ppalist2_res in let res = (Paths.PathSet.from_renamed_list ppalist1_res, Paths.PathSet.from_renamed_list ppalist2_res) in join_time := !join_time +. (Unix.gettimeofday () -. initial_time); res (** The meet operator does two things: 1) makes the result logically stronger (just like additive conjunction) 2) makes the result spatially larger (just like multiplicative conjunction). Assuming that the meet operator forms a partial commutative monoid (soft assumption: it means that the results are more predictable), try to combine every element of plist with any other element. Return a list of the same lenght, with each element maximally combined. The algorithm is quadratic. The operation is dependent on the order in which elements are combined; there is a straightforward order - independent algorithm but it is exponential. *) let proplist_meet_generate tenv plist = let props_done = ref Propset.empty in let combine p (porig, pcombined) = SymOp.pay (); (* pay one symop *) L.d_strln ".... MEET ...."; L.d_strln "MEET SYM HEAP1: "; Prop.d_prop p; L.d_ln (); L.d_strln "MEET SYM HEAP2: "; Prop.d_prop pcombined; L.d_ln (); match prop_partial_meet tenv p pcombined with | None -> L.d_strln_color Red ".... MEET FAILED ...."; L.d_ln (); (porig, pcombined) | Some pcombined' -> L.d_strln_color Green ".... MEET SUCCEEDED ...."; L.d_strln "RESULT SYM HEAP:"; Prop.d_prop pcombined'; L.d_ln (); L.d_ln (); (porig, pcombined') in let rec proplist_meet = function | [] -> () | (porig, pcombined) :: pplist -> (* use porig instead of pcombined because it might be combinable with more othe props *) (* e.g. porig might contain a global var to add to the ture branch of a conditional *) (* but pcombined might have been combined with the false branch already *) let pplist' = IList.map (combine porig) pplist in props_done := Propset.add tenv pcombined !props_done; proplist_meet pplist' in proplist_meet (IList.map (fun p -> (p, p)) plist); !props_done let propset_meet_generate_pre tenv pset = let plist = Propset.to_proplist pset in if Config.meet_level = 0 then plist else let pset1 = proplist_meet_generate tenv plist in let pset_new = Propset.diff pset1 pset in let plist_old = Propset.to_proplist pset in let plist_new = Propset.to_proplist pset_new in plist_new @ plist_old