(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Iterative Breadth-First Bounded Exploration The analysis' semantics of control flow. *) module Make (Opts : Domain_intf.Opts) (Dom : Domain_intf.Dom) = struct module Stack : sig type t val pp : t pp type as_inlined_location = t [@@deriving compare, sexp_of] val empty : t val push_call : Llair.func Llair.call -> Dom.from_call -> t -> t option val pop_return : t -> (Dom.from_call * Llair.jump * t) option val pop_throw : t -> 'a -> unwind: ( Llair.Reg.t iarray -> Llair.Reg.Set.t -> Dom.from_call -> 'a -> 'a) -> (Dom.from_call * Llair.jump * t * 'a) option end = struct type t = | Return of { recursive: bool (** return from a possibly-recursive call *) ; dst: Llair.Jump.t ; formals: Llair.Reg.t iarray ; locals: Llair.Reg.Set.t ; from_call: Dom.from_call ; stk: t } | Throw of Llair.Jump.t * t | Empty [@@deriving sexp_of] let rec pp ppf = function | Return {recursive= false; dst; stk= s} -> Format.fprintf ppf "R#%i%a" dst.dst.sort_index pp s | Return {recursive= true; dst; stk= s} -> Format.fprintf ppf "R↑#%i%a" dst.dst.sort_index pp s | Throw (dst, s) -> Format.fprintf ppf "T#%i%a" dst.dst.sort_index pp s | Empty -> () type as_inlined_location = t [@@deriving sexp_of] (* Treat a stack as a code location in a hypothetical expansion of the program where all non-recursive functions have been completely inlined. In particular, this means to compare stacks as if all Return frames for recursive calls had been removed. Additionally, the from_call info in Return frames is ignored. *) let rec compare_as_inlined_location x y = if x == y then 0 else match (x, y) with | Return {recursive= true; stk= x}, y |x, Return {recursive= true; stk= y} -> compare_as_inlined_location x y | Return {dst= j; stk= x}, Return {dst= k; stk= y} -> ( match Llair.Jump.compare j k with | 0 -> compare_as_inlined_location x y | n -> n ) | Return _, _ -> -1 | _, Return _ -> 1 | Throw (j, x), Throw (k, y) -> ( match Llair.Jump.compare j k with | 0 -> compare_as_inlined_location x y | n -> n ) | Throw _, _ -> -1 | _, Throw _ -> 1 | Empty, Empty -> 0 let invariant s = let@ () = Invariant.invariant [%here] s [%sexp_of: t] in match s with | Return _ | Throw (_, Return _) | Empty -> () | Throw _ -> fail "malformed stack: %a" pp s () let empty = Empty |> check invariant let push_return Llair.{callee= {formals; locals}; return; recursive} from_call stk = Return {recursive; dst= return; formals; locals; from_call; stk} |> check invariant let push_throw jmp stk = (match jmp with None -> stk | Some jmp -> Throw (jmp, stk)) |> check invariant let push_call (Llair.{return; throw} as call) from_call stk = [%Trace.call fun {pf} -> pf "@ %a" pp stk] ; let rec count_f_in_stack acc f = function | Return {stk= next_frame; dst= dest_block} -> count_f_in_stack (if Llair.Jump.equal dest_block f then acc + 1 else acc) f next_frame | _ -> acc in let n = count_f_in_stack 0 return stk in ( if n > Opts.bound then ( Report.hit_bound n ; None ) else Some (push_throw throw (push_return call from_call stk)) ) |> [%Trace.retn fun {pf} _ -> pf "%d of %a on stack" n Llair.Jump.pp return] let rec pop_return = function | Throw (_, stk) -> pop_return stk | Return {from_call; dst; stk} -> Some (from_call, dst, stk) | Empty -> None let pop_throw stk state ~unwind = let rec pop_throw_ state = function | Return {formals; locals; from_call; stk} -> pop_throw_ (unwind formals locals from_call state) stk | Throw (dst, Return {from_call; stk}) -> Some (from_call, dst, stk, state) | Empty -> None | Throw _ as stk -> violates invariant stk in pop_throw_ state stk end module Work : sig type t val init : Dom.t -> Llair.block -> t type x val skip : x val seq : x -> x -> x val add : ?prev:Llair.block -> retreating:bool -> Stack.t -> Dom.t -> Llair.block -> x val run : f:(Stack.t -> Dom.t -> Llair.block -> x) -> t -> unit end = struct module Edge = struct module T = struct type t = { dst: Llair.Block.t ; src: Llair.Block.t option ; stk: Stack.as_inlined_location } [@@deriving compare, sexp_of] end include T let pp fs {dst; src} = Format.fprintf fs "#%i %%%s <--%a" dst.sort_index dst.lbl (Option.pp "%a" (fun fs (src : Llair.Block.t) -> Format.fprintf fs " #%i %%%s" src.sort_index src.lbl )) src end module Depths = struct module M = Map.Make (Edge) type t = int M.t [@@deriving compare, sexp_of] let empty = M.empty let find = M.find let add = M.add let join x y = M.merge x y ~f:(fun _ -> function | `Left d | `Right d -> Some d | `Both (d1, d2) -> Some (Int.max d1 d2) ) end module PrioQueue : sig (** an edge at a depth with the domain and depths state it yielded *) type elt = {depth: int; edge: Edge.t; state: Dom.t; depths: Depths.t} type t val pp : t pp val create : unit -> t (** create an empty queue *) val add : elt -> t -> t (** add an element *) val remove : elt -> t -> t (** remove an element *) val pop : t -> (elt * elt list * t) option (** the top element, the other elements with the same destination, the queue without the top element *) end = struct type elt = {depth: int; edge: Edge.t; state: Dom.t; depths: Depths.t} [@@deriving compare, sexp_of] module Elt = struct type t = elt [@@deriving compare, sexp_of] let pp ppf {depth; edge} = Format.fprintf ppf "%i: %a" depth Edge.pp edge end module Elts = Set.Make (Elt) type t = {queue: elt FHeap.t; removed: Elts.t} let pp ppf {queue; removed} = let rev_elts = FHeap.fold queue ~init:[] ~f:(fun rev_elts elt -> if Elts.mem elt removed then rev_elts else elt :: rev_elts ) in Format.fprintf ppf "@[%a@]" (List.pp " ::@ " Elt.pp) (List.rev rev_elts) let create () = {queue= FHeap.create ~cmp:compare_elt; removed= Elts.empty} let add elt {queue; removed} = let removed' = Elts.remove elt removed in if removed' == removed then {queue= FHeap.add queue elt; removed} else {queue; removed= removed'} let remove elt {queue; removed} = {queue; removed= Elts.add elt removed} let rec pop {queue; removed} = let* top, queue = FHeap.pop queue in let removed' = Elts.remove top removed in if removed' != removed then pop {queue; removed= removed'} else let elts = FHeap.fold queue ~init:[] ~f:(fun elts elt -> if Llair.Block.equal top.edge.dst elt.edge.dst && not (Elts.mem elt removed) then elt :: elts else elts ) in Some (top, elts, {queue; removed}) end type t = PrioQueue.t type x = Depths.t -> t -> t let skip _ w = w let seq x y d w = y d (x d w) let add ?prev ~retreating stk state curr depths queue = let edge = {Edge.dst= curr; src= prev; stk} in let depth = Option.value (Depths.find edge depths) ~default:0 in let depth = if retreating then depth + 1 else depth in if depth <= Opts.bound then ( [%Trace.info "@[<6>enqueue %i: %a [%a]@ | %a@]" depth Edge.pp edge Stack.pp edge.stk PrioQueue.pp queue] ; let depths = Depths.add ~key:edge ~data:depth depths in PrioQueue.add {depth; edge; state; depths} queue ) else ( [%Trace.info "prune: %i: %a" depth Edge.pp edge] ; Report.hit_bound Opts.bound ; queue ) let init state curr = add ~retreating:false Stack.empty state curr Depths.empty (PrioQueue.create ()) let rec run ~f queue = match PrioQueue.pop queue with | Some ({depth; edge; state; depths}, elts, queue) -> [%Trace.info "@[<6>dequeue %i: %a [%a]@ | %a@]" depth Edge.pp edge Stack.pp edge.stk PrioQueue.pp queue] ; let state, depths, queue = List.fold elts (state, depths, queue) ~f:(fun elt (state, depths, queue) -> match Dom.join elt.state state with | Some state -> let depths = Depths.join elt.depths depths in let queue = PrioQueue.remove elt queue in (state, depths, queue) | None -> (state, depths, queue) ) in run ~f (f edge.stk state edge.dst depths queue) | None -> [%Trace.info "queue empty"] ; () end let exec_jump stk state block Llair.{dst; retreating} = Work.add ~prev:block ~retreating stk state dst let summary_table = Llair.Function.Tbl.create () let exec_call stk state block call globals = let Llair.{callee; actuals; areturn; return; recursive} = call in let Llair.{name; formals; freturn; locals; entry} = callee in [%Trace.call fun {pf} -> pf "@ %a from %a with state@ %a" Llair.Function.pp name Llair.Function.pp return.dst.parent.name Dom.pp state] ; let dnf_states = if Opts.function_summaries then Dom.dnf state else [state] in let domain_call = Dom.call ~globals ~actuals ~areturn ~formals ~freturn ~locals in List.fold dnf_states Work.skip ~f:(fun state acc -> match if not Opts.function_summaries then None else let maybe_summary_post = let state = fst (domain_call ~summaries:false state) in let* summary = Llair.Function.Tbl.find summary_table name in List.find_map ~f:(Dom.apply_summary state) summary in [%Trace.info "Maybe summary post: %a" (Option.pp "%a" Dom.pp) maybe_summary_post] ; maybe_summary_post with | None -> let state, from_call = domain_call ~summaries:Opts.function_summaries state in Work.seq acc ( match Stack.push_call call from_call stk with | Some stk -> Work.add stk ~prev:block ~retreating:recursive state entry | None -> ( match Dom.recursion_beyond_bound with | `skip -> Work.seq acc (exec_jump stk state block return) | `prune -> Work.skip ) ) | Some post -> Work.seq acc (exec_jump stk post block return) ) |> [%Trace.retn fun {pf} _ -> pf ""] let exec_skip_func : Stack.t -> Dom.t -> Llair.block -> Llair.Reg.t option -> Llair.jump -> Work.x = fun stk state block areturn return -> Report.unknown_call block.term ; let state = Option.fold ~f:Dom.exec_kill areturn state in exec_jump stk state block return let exec_call stk state block ({Llair.callee; areturn; return; _} as call) globals = if Llair.Func.is_undefined callee then exec_skip_func stk state block areturn return else exec_call stk state block call globals let pp_st () = [%Trace.printf "@[%t@]" (fun fs -> Llair.Function.Tbl.iteri summary_table ~f:(fun ~key ~data -> Format.fprintf fs "@[%a:@ @[%a@]@]@ " Llair.Function.pp key (List.pp "@," Dom.pp_summary) data ) )] let exec_return stk pre_state (block : Llair.block) exp = let Llair.{name; formals; freturn; locals} = block.parent in [%Trace.call fun {pf} -> pf "@ from: %a" Llair.Function.pp name] ; let summarize post_state = if not Opts.function_summaries then post_state else let function_summary, post_state = Dom.create_summary ~locals ~formals post_state in Llair.Function.Tbl.add_multi ~key:name ~data:function_summary summary_table ; pp_st () ; post_state in let exit_state = match (freturn, exp) with | Some freturn, Some return_val -> Dom.exec_move (IArray.of_ (freturn, return_val)) pre_state | None, None -> pre_state | _ -> violates Llair.Func.invariant block.parent in ( match Stack.pop_return stk with | Some (from_call, retn_site, stk) -> let post_state = summarize (Dom.post locals from_call exit_state) in let retn_state = Dom.retn formals freturn from_call post_state in exec_jump stk retn_state block retn_site | None -> (* Create and store a function summary for main *) if Opts.function_summaries && List.mem ~eq:String.equal (Llair.Function.name name) Opts.entry_points then summarize exit_state |> (ignore : Dom.t -> unit) ; Work.skip ) |> [%Trace.retn fun {pf} _ -> pf ""] let exec_throw stk pre_state (block : Llair.block) exc = let func = block.parent in [%Trace.call fun {pf} -> pf "@ from %a" Llair.Function.pp func.name] ; let unwind formals scope from_call state = Dom.retn formals (Some func.fthrow) from_call (Dom.post scope from_call state) in ( match Stack.pop_throw stk ~unwind pre_state with | Some (from_call, retn_site, stk, unwind_state) -> let fthrow = func.fthrow in let exit_state = Dom.exec_move (IArray.of_ (fthrow, exc)) unwind_state in let post_state = Dom.post func.locals from_call exit_state in let retn_state = Dom.retn func.formals func.freturn from_call post_state in exec_jump stk retn_state block retn_site | None -> Work.skip ) |> [%Trace.retn fun {pf} _ -> pf ""] let exec_assume cond jump stk state block = match Dom.exec_assume state cond with | Some state -> exec_jump stk state block jump | None -> [%Trace.info "@[<2>infeasible assume %a@\n@[%a@]@]" Llair.Exp.pp cond Dom.pp state] ; Work.skip let exec_term : Llair.program -> Stack.t -> Dom.t -> Llair.block -> Work.x = fun pgm stk state block -> [%Trace.info "@[<2>exec term@\n@[%a@]@\n%a@]" Dom.pp state Llair.Term.pp block.term] ; Report.step_term block.term ; match block.term with | Switch {key; tbl; els} -> IArray.fold ~f:(fun (case, jump) x -> exec_assume (Llair.Exp.eq key case) jump stk state block |> Work.seq x ) tbl (exec_assume (IArray.fold tbl Llair.Exp.true_ ~f:(fun (case, _) b -> Llair.Exp.and_ (Llair.Exp.dq key case) b )) els stk state block) | Iswitch {ptr; tbl} -> IArray.fold tbl Work.skip ~f:(fun (jump : Llair.jump) x -> exec_assume (Llair.Exp.eq ptr (Llair.Exp.label ~parent:(Llair.Function.name jump.dst.parent.name) ~name:jump.dst.lbl)) jump stk state block |> Work.seq x ) | Call ({callee} as call) -> exec_call stk state block call (Domain_used_globals.by_function Opts.globals callee.name) | ICall ({callee; areturn; return} as call) -> ( let lookup name = Llair.Func.find name pgm.functions in match Dom.resolve_callee lookup callee state with | [] -> exec_skip_func stk state block areturn return | callees -> List.fold callees Work.skip ~f:(fun callee x -> exec_call stk state block {call with callee} (Domain_used_globals.by_function Opts.globals callee.name) |> Work.seq x ) ) | Return {exp} -> exec_return stk state block exp | Throw {exc} -> exec_throw stk state block exc | Unreachable -> Work.skip let exec_inst : Llair.inst -> Dom.t -> (Dom.t, Dom.t * Llair.inst) result = fun inst state -> [%Trace.info "@[<2>exec inst@\n@[%a@]@\n%a@]" Dom.pp state Llair.Inst.pp inst] ; Report.step_inst inst ; Dom.exec_inst inst state |> function | Some state -> Result.Ok state | None -> Result.Error (state, inst) let exec_block : Llair.program -> Stack.t -> Dom.t -> Llair.block -> Work.x = fun pgm stk state block -> [%trace] ~call:(fun {pf} -> pf "@ #%i %%%s in %a" block.sort_index block.lbl Llair.Function.pp block.parent.name ) ~retn:(fun {pf} _ -> pf "#%i %%%s in %a" block.sort_index block.lbl Llair.Function.pp block.parent.name ) @@ fun () -> match Iter.fold_result ~f:exec_inst (IArray.to_iter block.cmnd) state with | Ok state -> exec_term pgm stk state block | Error (state, inst) -> Report.invalid_access_inst (Dom.report_fmt_thunk state) inst ; Work.skip let harness : Llair.program -> Work.t option = fun pgm -> List.find_map ~f:(fun entry_point -> Llair.Func.find entry_point pgm.functions) Opts.entry_points |> function | Some {name; formals; freturn; locals; entry} when IArray.is_empty formals -> Some (Work.init (fst (Dom.call ~summaries:Opts.function_summaries ~globals: (Domain_used_globals.by_function Opts.globals name) ~actuals:IArray.empty ~areturn:None ~formals:IArray.empty ~freturn ~locals (Dom.init pgm.globals))) entry) | _ -> None let exec_pgm : Llair.program -> unit = fun pgm -> match harness pgm with | Some work -> Work.run ~f:(exec_block pgm) work | None -> fail "no applicable harness" () let compute_summaries pgm : Dom.summary list Llair.Function.Map.t = assert Opts.function_summaries ; exec_pgm pgm ; Llair.Function.Tbl.fold summary_table Llair.Function.Map.empty ~f:(fun ~key ~data map -> match data with | [] -> map | _ -> Llair.Function.Map.add ~key ~data map ) end