(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Global namespace opened in each source file by the build system *) include ( Base : sig include (module type of Base (* prematurely deprecated, remove and use Stdlib instead *) with module Filename := Base.Filename and module Format := Base.Format and module Marshal := Base.Marshal and module Scanf := Base.Scanf and type ('ok, 'err) result := ('ok, 'err) Base.result [@warning "-3"]) end ) (* undeprecate *) external ( == ) : 'a -> 'a -> bool = "%eq" external ( != ) : 'a -> 'a -> bool = "%noteq" exception Not_found = Caml.Not_found include Stdio module Command = Core.Command module Hash_queue = Core_kernel.Hash_queue (** Tuple operations *) let fst3 (x, _, _) = x let snd3 (_, y, _) = y let trd3 (_, _, z) = z (** Function combinators *) let ( >> ) f g x = g (f x) let ( << ) f g x = f (g x) let ( $ ) f g x = f x ; g x let ( $> ) x f = f x ; x let ( <$ ) f x = f x ; x (** Pretty-printing *) type 'a pp = Formatter.t -> 'a -> unit type ('a, 'b) fmt = ('a, 'b) Trace.fmt (** Failures *) let fail = Trace.fail exception Unimplemented of string let todo fmt = Trace.raisef (fun msg -> Unimplemented msg) fmt let warn fmt = let fs = Format.std_formatter in Format.pp_open_box fs 2 ; Format.pp_print_string fs "Warning: " ; Format.kfprintf (fun fs () -> Format.pp_close_box fs () ; Format.pp_force_newline fs () ) fs fmt (** Assertions *) let assertf cnd fmt = if not cnd then fail fmt else Format.ikfprintf (fun _ () -> ()) Format.str_formatter fmt let checkf cnd fmt = if not cnd then fail fmt else Format.ikfprintf (fun _ () -> true) Format.str_formatter fmt let check f x = assert (f x ; true) ; x let violates f x = assert (f x ; true) ; assert false type 'a or_error = ('a, exn * Caml.Printexc.raw_backtrace) result let or_error f x () = try Ok (f x) with exn -> Error (exn, Caml.Printexc.get_raw_backtrace ()) (** Extensions *) module Invariant = struct include Base.Invariant let invariant here t sexp_of_t f = assert ( ( try f () with exn -> let bt = Caml.Printexc.get_raw_backtrace () in let exn = Error.to_exn (Error.create_s (Base.Sexp.message "invariant failed" [ ("", sexp_of_exn exn) ; ("", Source_code_position.sexp_of_t here) ; ("", sexp_of_t t) ])) in Caml.Printexc.raise_with_backtrace exn bt ) ; true ) end let map_preserving_phys_equal map t ~f = let change = ref false in let t' = map t ~f:(fun x -> let x' = f x in if not (x' == x) then change := true ; x' ) in if !change then t' else t let filter_map_preserving_phys_equal filter_map t ~f = let change = ref false in let t' = filter_map t ~f:(fun x -> let x'_opt = f x in ( match x'_opt with | Some x' when x' == x -> () | _ -> change := true ) ; x'_opt ) in if !change then t' else t module type Applicative_syntax = sig type 'a t val ( let+ ) : 'a t -> ('a -> 'b) -> 'b t val ( and+ ) : 'a t -> 'b t -> ('a * 'b) t end module type Monad_syntax = sig include Applicative_syntax val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t val ( and* ) : 'a t -> 'b t -> ('a * 'b) t end module Option = struct include Base.Option let pp fmt pp_elt fs = function | Some x -> Format.fprintf fs fmt pp_elt x | None -> () let cons xo xs = match xo with Some x -> x :: xs | None -> xs module Monad_syntax = struct type nonrec 'a t = 'a t let ( let+ ) x f = map ~f x let ( and+ ) x y = both x y let ( let* ) x f = bind ~f x let ( and* ) x y = both x y end end include Option.Monad_infix include Option.Monad_syntax module List = struct include Base.List let rec pp ?pre ?suf sep pp_elt fs = function | [] -> () | x :: xs -> Option.iter pre ~f:(Format.fprintf fs) ; pp_elt fs x ; ( match xs with | [] -> () | xs -> Format.fprintf fs "%( %)%a" sep (pp sep pp_elt) xs ) ; Option.iter suf ~f:(Format.fprintf fs) let pop_exn = function x :: xs -> (x, xs) | [] -> raise Not_found let find_map_remove xs ~f = let rec find_map_remove_ ys = function | [] -> None | x :: xs -> ( match f x with | Some x' -> Some (x', rev_append ys xs) | None -> find_map_remove_ (x :: ys) xs ) in find_map_remove_ [] xs let fold_option xs ~init ~f = With_return.with_return @@ fun {return} -> Some (fold xs ~init ~f:(fun acc elt -> match f acc elt with Some res -> res | None -> return None )) let filter_map_preserving_phys_equal t ~f = filter_map_preserving_phys_equal filter_map t ~f let map_preserving_phys_equal t ~f = map_preserving_phys_equal map t ~f let rev_map_unzip xs ~f = fold xs ~init:([], []) ~f:(fun (ys, zs) x -> let y, z = f x in (y :: ys, z :: zs) ) let remove_exn ?(equal = phys_equal) xs x = let rec remove_ ys = function | [] -> raise Not_found | z :: xs -> if equal x z then rev_append ys xs else remove_ (z :: ys) xs in remove_ [] xs let remove ?equal xs x = try Some (remove_exn ?equal xs x) with Not_found -> None let rec rev_init n ~f = if n = 0 then [] else let n = n - 1 in let xs = rev_init n ~f in f n :: xs let symmetric_diff ~compare xs ys = let rec symmetric_diff_ xxs yys = match (xxs, yys) with | x :: xs, y :: ys -> let ord = compare x y in if ord = 0 then symmetric_diff_ xs ys else if ord < 0 then Either.First x :: symmetric_diff_ xs yys else Either.Second y :: symmetric_diff_ xxs ys | xs, [] -> map ~f:Either.first xs | [], ys -> map ~f:Either.second ys in symmetric_diff_ (sort ~compare xs) (sort ~compare ys) let pp_diff ~compare sep pp_elt fs (xs, ys) = let pp_diff_elt fs elt = match (elt : _ Either.t) with | First x -> Format.fprintf fs "-- %a" pp_elt x | Second y -> Format.fprintf fs "++ %a" pp_elt y in pp sep pp_diff_elt fs (symmetric_diff ~compare xs ys) end module Map = struct include Base.Map let pp pp_k pp_v fs m = Format.fprintf fs "@[<1>[%a]@]" (List.pp ",@ " (fun fs (k, v) -> Format.fprintf fs "@[%a @<2>↦ %a@]" pp_k k pp_v v )) (to_alist m) let pp_diff ~data_equal pp_key pp_val pp_diff_val fs (x, y) = let pp_diff_elt fs = function | k, `Left v -> Format.fprintf fs "-- [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v | k, `Right v -> Format.fprintf fs "++ [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v | k, `Unequal vv -> Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_key k pp_diff_val vv in let sd = Sequence.to_list (symmetric_diff ~data_equal x y) in if not (List.is_empty sd) then Format.fprintf fs "[@[%a@]];@ " (List.pp ";@ " pp_diff_elt) sd let equal_m__t (module Elt : Compare_m) equal_v = equal equal_v let find_and_remove m k = let found = ref None in let m = change m k ~f:(fun v -> found := v ; None ) in let+ v = !found in (v, m) let find_or_add (type data) map key ~(default : data) ~if_found ~if_added = let exception Found of data in match update map key ~f:(function | Some old_data -> Exn.raise_without_backtrace (Found old_data) | None -> default ) with | exception Found old_data -> if_found old_data | map -> if_added map let map_preserving_phys_equal t ~f = map_preserving_phys_equal map t ~f end module Result = struct include Base.Result let pp fmt pp_elt fs = function | Ok x -> Format.fprintf fs fmt pp_elt x | Error _ -> () end module Vector = struct include Vector let pp sep pp_elt fs v = List.pp sep pp_elt fs (to_list v) end include Vector.Infix module Set = struct include Base.Set type ('elt, 'cmp) tree = ('elt, 'cmp) Using_comparator.Tree.t let equal_m__t (module Elt : Compare_m) = equal let pp pp_elt fs x = List.pp ",@ " pp_elt fs (to_list x) let pp_diff pp_elt fs (xs, ys) = let lose = diff xs ys and gain = diff ys xs in if not (is_empty lose) then Format.fprintf fs "-- %a" (pp pp_elt) lose ; if not (is_empty gain) then Format.fprintf fs "++ %a" (pp pp_elt) gain let disjoint x y = is_empty (inter x y) let add_option yo x = Option.fold ~f:add ~init:x yo let add_list ys x = List.fold ~f:add ~init:x ys let diff_inter x y = (diff x y, inter x y) let diff_inter_diff x y = (diff x y, inter x y, diff y x) let of_vector cmp x = of_array cmp (Vector.to_array x) let to_tree = Using_comparator.to_tree let union x y = let xy = union x y in let xy_tree = to_tree xy in if xy_tree == to_tree x then x else if xy_tree == to_tree y then y else xy end module Qset = struct include Qset let pp sep pp_elt fs s = List.pp sep pp_elt fs (to_list s) end module Array = struct include Base.Array let pp sep pp_elt fs a = List.pp sep pp_elt fs (to_list a) end module Q = struct let pp = Q.pp_print let hash = Hashtbl.hash let hash_fold_t s q = Int.hash_fold_t s (hash q) let sexp_of_t q = Sexp.Atom (Q.to_string q) let t_of_sexp = function | Sexp.Atom s -> Q.of_string s | _ -> assert false let of_z = Q.of_bigint include Q end module Z = struct let pp = Z.pp_print let hash = [%hash: Z.t] let hash_fold_t s z = Int.hash_fold_t s (hash z) let sexp_of_t z = Sexp.Atom (Z.to_string z) let t_of_sexp = function | Sexp.Atom s -> Z.of_string s | _ -> assert false (* the signed 1-bit integers are -1 and 0 *) let true_ = Z.minus_one let false_ = Z.zero let of_bool = function true -> true_ | false -> false_ let is_true = Z.equal true_ let is_false = Z.equal false_ include Z end