(* * Copyright (c) 2016 - present Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) open! Utils module F = Format (** Control-flow graph for a single procedure (as opposed to cfg.ml, which represents a cfg for a file). Defines useful wrappers that allows us to do tricks like turn a forward cfg into a backward one, or view a cfg as having a single instruction per node. *) type index = Node_index | Instr_index of int module type Node = sig type t type id val kind : t -> Cfg.Node.nodekind val id : t -> id val loc : t -> Location.t val underlying_id : t -> Cfg.Node.id val id_compare : id -> id -> int val pp_id : F.formatter -> id -> unit end module DefaultNode = struct type t = Cfg.Node.t type id = Cfg.Node.id let kind = Cfg.Node.get_kind let id = Cfg.Node.get_id let loc = Cfg.Node.get_loc let underlying_id = id let id_compare = Cfg.Node.id_compare let pp_id = Cfg.Node.pp_id end module InstrNode = struct type t = Cfg.Node.t type id = Cfg.Node.id * index let kind = Cfg.Node.get_kind let underlying_id t = Cfg.Node.get_id t let id t = underlying_id t, Node_index let loc t = Cfg.Node.get_loc t let index_compare index1 index2 = match index1, index2 with | Node_index, Node_index -> 0 | Instr_index i1, Instr_index i2 -> int_compare i1 i2 | Node_index, Instr_index _ -> 1 | Instr_index _, Node_index -> -1 let id_compare (id1, index1) (id2, index2) = let n = Cfg.Node.id_compare id1 id2 in if n <> 0 then n else index_compare index1 index2 let pp_id fmt (id, index) = match index with | Node_index -> Cfg.Node.pp_id fmt id | Instr_index i -> F.fprintf fmt "(%a: %d)" Cfg.Node.pp_id id i end module type S = sig type t type node include (Node with type t := node) (** get the instructions from a node *) val instrs : node -> Sil.instr list (** explode a block into its instructions and an optional id for the instruction. the purpose of this is to specify a policy for fine-grained storage of invariants by the abstract interpreter. the interpreter will forget invariants at program points where the id is None, and remember them otherwise *) val instr_ids : node -> (Sil.instr * id option) list val succs : t -> node -> node list (** all predecessors (normal and exceptional) *) val preds : t -> node -> node list (** non-exceptional successors *) val normal_succs : t -> node -> node list (** non-exceptional predecessors *) val normal_preds : t -> node -> node list (** exceptional successors *) val exceptional_succs : t -> node -> node list (** exceptional predescessors *) val exceptional_preds : t -> node -> node list val start_node : t -> node val exit_node : t -> node val proc_desc : t -> Cfg.Procdesc.t val nodes : t -> node list val from_pdesc : Cfg.Procdesc.t -> t end (** Forward CFG with no exceptional control-flow *) module Normal = struct type t = Cfg.Procdesc.t type node = DefaultNode.t include (DefaultNode : module type of DefaultNode with type t := node) let instrs = Cfg.Node.get_instrs let instr_ids n = IList.map (fun i -> i, None) (instrs n) let normal_succs _ n = Cfg.Node.get_succs n let normal_preds _ n = Cfg.Node.get_preds n (* prune away exceptional control flow *) let exceptional_succs _ _ = [] let exceptional_preds _ _ = [] let succs = normal_succs let preds = normal_preds let start_node = Cfg.Procdesc.get_start_node let exit_node = Cfg.Procdesc.get_exit_node let proc_desc t = t let nodes = Cfg.Procdesc.get_nodes let from_pdesc pdesc = pdesc end (** Forward CFG with exceptional control-flow *) module Exceptional = struct type node = DefaultNode.t type id_node_map = node list Cfg.IdMap.t type t = Cfg.Procdesc.t * id_node_map include (DefaultNode : module type of DefaultNode with type t := node) let from_pdesc pdesc = (* map from a node to its exceptional predecessors *) let add_exn_preds exn_preds_acc n = let add_exn_pred exn_preds_acc exn_succ_node = let exn_succ_node_id = Cfg.Node.get_id exn_succ_node in let existing_exn_preds = try Cfg.IdMap.find exn_succ_node_id exn_preds_acc with Not_found -> [] in if not (IList.mem Cfg.Node.equal n existing_exn_preds) then (* don't add duplicates *) Cfg.IdMap.add exn_succ_node_id (n :: existing_exn_preds) exn_preds_acc else exn_preds_acc in IList.fold_left add_exn_pred exn_preds_acc (Cfg.Node.get_exn n) in let exceptional_preds = IList.fold_left add_exn_preds Cfg.IdMap.empty (Cfg.Procdesc.get_nodes pdesc) in pdesc, exceptional_preds let instrs = Cfg.Node.get_instrs let instr_ids n = IList.map (fun i -> i, None) (instrs n) let nodes (t, _) = Cfg.Procdesc.get_nodes t let normal_succs _ n = Cfg.Node.get_succs n let normal_preds _ n = Cfg.Node.get_preds n let exceptional_succs _ n = Cfg.Node.get_exn n let exceptional_preds (_, exn_pred_map) n = try Cfg.IdMap.find (Cfg.Node.get_id n) exn_pred_map with Not_found -> [] (** get all normal and exceptional successors of [n]. *) let succs t n = let normal_succs = normal_succs t n in match exceptional_succs t n with | [] -> normal_succs | exceptional_succs -> normal_succs @ exceptional_succs |> IList.sort Cfg.Node.compare |> IList.remove_duplicates Cfg.Node.compare (** get all normal and exceptional predecessors of [n]. *) let preds t n = let normal_preds = normal_preds t n in match exceptional_preds t n with | [] -> normal_preds | exceptional_preds -> normal_preds @ exceptional_preds |> IList.sort Cfg.Node.compare |> IList.remove_duplicates Cfg.Node.compare let proc_desc (pdesc, _) = pdesc let start_node (pdesc, _) = Cfg.Procdesc.get_start_node pdesc let exit_node (pdesc, _) = Cfg.Procdesc.get_exit_node pdesc end (** Wrapper that reverses the direction of the CFG *) module Backward (Base : S) = struct include Base let instrs n = IList.rev (Base.instrs n) let instr_ids n = IList.rev (Base.instr_ids n) let succs = Base.preds let preds = Base.succs let start_node = Base.exit_node let exit_node = Base.start_node let normal_succs = Base.normal_preds let normal_preds = Base.normal_succs let exceptional_succs = Base.exceptional_preds let exceptional_preds = Base.exceptional_succs end module OneInstrPerNode (Base : S with type node = Cfg.Node.t and type id = Cfg.Node.id) = struct include (Base : module type of Base with type id := Cfg.Node.id and type t = Base.t) type id = Base.id * index include (InstrNode : module type of InstrNode with type t := node and type id := id) (* keep the invariants before/after each instruction *) let instr_ids t = IList.mapi (fun i instr -> let id = Cfg.Node.get_id t, Instr_index i in instr, Some id) (instrs t) end module NodeIdMap (CFG : S) = Map.Make(struct type t = CFG.id let compare = CFG.id_compare end) module NodeIdSet (CFG : S) = Set.Make(struct type t = CFG.id let compare = CFG.id_compare end)