(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (* A mini-LLAIR model, based on the files in sledge/src/llair *) open HolKernel boolLib bossLib Parse; open settingsTheory memory_modelTheory; new_theory "llair"; numLib.prefer_num (); (* ----- Abstract syntax ----- *) Datatype: typ = | FunctionT typ (typ list) (* How many bits the integer occupies *) | IntegerT num | PointerT typ | ArrayT typ num | TupleT (typ list) End Datatype: var = Var_name string typ End Datatype: label = Lab_name string string End (* Based on the constructor functions in exp.mli rather than the type definition *) Datatype: exp = | Var var | Nondet (* Args: function name, block name *) | Label label (* Args: byte, size *) | Splat exp exp (* Args: size, byte array *) | Memory exp exp (* Byte array concatenation *) | Concat (exp list) | Integer int typ | Eq exp exp | Lt exp exp | Ult exp exp | Sub typ exp exp | Record (exp list) (* Args: Record, index *) | Select exp exp (* Args: Record, index, value *) | Update exp exp exp End Datatype: inst = (* Args: the list of variable, expression assignments to do *) | Move ((var # exp) list) (* Args: result reg, pointer, length *) | Load var exp num (* Args: pointer, value, length *) | Store exp exp num (* Args: destination, contents, length *) | Memset exp exp exp (* Args: destination, source, length *) | Memcpy exp exp exp (* Args: destination, source, length *) | Memmov exp exp exp (* Args : result, number of elements, size *) | Alloc var exp exp (* Args: pointer *) | Free exp (* Args: result reg *) | NondetI var | Abort End Datatype: term = (* Args: key, branch table, default exp *) | Switch exp ((int # label) list) label (* Args: int to switch on, jump table *) | Iswitch exp (label list) (* Args: result reg, function to call, arguments, return type of callee, * return target, exception target *) | Call var label (exp list) typ label label | Return exp | Throw exp | Unreachable | Exit End Datatype: block = <| cmnd : inst list; term : term |> End (* The llair code doesn't have params here yet, but it will need to *) Datatype: func = <| params : var list; locals : var set; entry : label; cfg : (label, block) alist; freturn : var; fthrow : var |> End (* The int is how much space the global needs *) Datatype: global = <| var : var; init : (exp # int) option; typ: typ |> End Datatype: llair = <| glob_init : global list; functions : (string, func) alist |> End (* ----- Semantic states ----- *) (* These are the values that can be stored in registers. The implementation uses * integers with a bit-width to represent numbers and pointers. Here we * interpret the bit width b as meaning the int should be in the range [-2^(b-1),2^(b-1)) *) Datatype: flat_v = | IntV int num End Type v = ``:flat_v reg_v`` Datatype: frame = <| ret : label; exn_ret : label; ret_var : var; saved_locals : var |-> v; |> End Datatype: state = <| bp : label; (* Pointer to the next block to execute *) glob_addrs : var |-> num; locals : var |-> v; stack : frame list; heap : unit heap; status : trace_type |> End (* Assume that all pointers can fit in 64 bits *) Definition pointer_size_def: pointer_size = 64 End (* ----- Semantic transitions ----- *) (* The size of a type in bytes, rounded up *) Definition sizeof_def: (sizeof (IntegerT n) = (n+7) DIV 8) ∧ (sizeof (PointerT t) = (pointer_size+7) DIV 8) ∧ (sizeof (ArrayT t n) = n * sizeof t) ∧ (sizeof (TupleT ts) = sum (map sizeof ts)) Termination WF_REL_TAC `measure typ_size` >> simp [] >> Induct >> rw [definition "typ_size_def"] >> simp [] >> first_x_assum drule >> decide_tac End Definition first_class_type_def: (first_class_type (IntegerT _) ⇔ T) ∧ (first_class_type (PointerT _) ⇔ T) ∧ (first_class_type (ArrayT t _) ⇔ first_class_type t) ∧ (first_class_type (TupleT ts) ⇔ every first_class_type ts) ∧ (first_class_type _ ⇔ F) Termination WF_REL_TAC `measure typ_size` >> rw [] >> Induct_on `ts` >> rw [definition "typ_size_def"] >> res_tac >> decide_tac End Inductive value_type: (∀n i. value_type (IntegerT n) (FlatV (IntV i n))) ∧ (∀t vs n. every (value_type t) vs ∧ length vs = n ∧ first_class_type t ⇒ value_type (ArrayT t n) (AggV vs)) ∧ (∀ts vs. list_rel value_type ts vs ⇒ value_type (TupleT ts) (AggV vs)) End Definition bool2v_def: bool2v b = FlatV (IntV (if b then 1 else 0) 1) End (* The integer, interpreted as 2's complement, fits in the given number of bits *) Definition ifits_def: ifits (i:int) size ⇔ 0 < size ∧ -(2 ** (size - 1)) ≤ i ∧ i < 2 ** (size - 1) End (* The natural number, interpreted as unsigned, fits in the given number of bits *) Definition nfits_def: nfits (n:num) size ⇔ 0 < size ∧ n < 2 ** size End (* Convert an integer to an unsigned number, following the 2's complement, * assuming (ifits i size) *) Definition i2n_def: i2n (IntV i size) : num = if i < 0 then Num (2 ** size + i) else Num i End (* Convert an unsigned number into the integer that it would be in 2's * compliment with the given size, assuming (nfits n size) *) Definition n2i_def: n2i n size = if 2 ** (size - 1) ≤ n then (IntV (&n - &(2 ** size)) size) else (IntV (&n) size) End Inductive eval_exp: (∀s v r. flookup s.locals v = Some r ⇒ eval_exp s (Var v) r) ∧ (* TODO: Nondet I guess we need to know the type here *) (* TODO: Label *) (∀s e1 e2 n byte n_size. eval_exp s e1 (FlatV (IntV byte 8)) ∧ (* This idiom means that e2 evaluates to a non-negative integer n, and is * used throughout *) eval_exp s e2 (FlatV (IntV (&n) n_size)) ⇒ eval_exp s (Splat e1 e2) (AggV (replicate n (FlatV (IntV byte 8))))) ∧ (* TODO Question: What if size <> vals? *) (∀s e1 e2 l vals n_size. eval_exp s e1 (AggV vals) ∧ eval_exp s e2 (FlatV (IntV (&l) n_size)) ∧ l = length vals ⇒ eval_exp s (Memory e1 e2) (AggV vals)) ∧ (∀s es vals. list_rel (eval_exp s) es (map AggV vals) ⇒ eval_exp s (Concat es) (AggV (flat vals))) ∧ (∀s i size. eval_exp s (Integer i (IntegerT size)) (FlatV (IntV (truncate_2comp i size) size))) ∧ (* TODO Question: Should the same integer with two different sizes be equal *) (∀s e1 e2 r1 r2. eval_exp s e1 r1 ∧ eval_exp s e2 r2 ⇒ eval_exp s (Eq e1 e2) (bool2v (r1 = r2))) ∧ (∀s e1 e2 i1 size1 i2 size2. eval_exp s e1 (FlatV (IntV i1 size1)) ∧ eval_exp s e2 (FlatV (IntV i2 size2)) ∧ ifits i1 size1 ∧ ifits i2 size2 ⇒ eval_exp s (Lt e1 e2) (bool2v (i1 < i2))) ∧ (∀s e1 e2 i1 i2 size1 size2. eval_exp s e1 (FlatV (IntV i1 size1)) ∧ eval_exp s e2 (FlatV (IntV i2 size2)) ∧ ifits i1 size1 ∧ ifits i2 size2 ⇒ eval_exp s (Ult e1 e2) (bool2v (i2n (IntV i1 size1) < i2n (IntV i2 size2)))) ∧ (∀s size e1 e2 i1 i2. eval_exp s e1 (FlatV (IntV i1 size)) ∧ eval_exp s e2 (FlatV (IntV i2 size)) ⇒ eval_exp s (Sub (IntegerT size) e1 e2) (FlatV (IntV (truncate_2comp (i1 - i2) size) size))) ∧ (∀s es vals. list_rel (eval_exp s) es vals ⇒ eval_exp s (Record es) (AggV vals)) ∧ (∀s e1 e2 vals idx idx_size. eval_exp s e1 (AggV vals) ∧ eval_exp s e2 (FlatV (IntV (&idx) idx_size)) ∧ idx < length vals ⇒ eval_exp s (Select e1 e2) (el idx vals)) ∧ (∀s e1 e2 e3 vals r idx idx_size. eval_exp s e1 (AggV vals) ∧ eval_exp s e2 (FlatV (IntV (&idx) idx_size)) ∧ eval_exp s e3 r ∧ idx < length vals ⇒ eval_exp s (Update e1 e2 e3) (AggV (list_update r idx vals))) End (* BEGIN Functions to interface to the generic memory model *) Definition type_to_shape_def: (type_to_shape (IntegerT n) = Flat (sizeof (IntegerT n)) (IntegerT n)) ∧ (type_to_shape (ArrayT t n) = Array (type_to_shape t) n) ∧ (type_to_shape (TupleT ts) = Tuple (map type_to_shape ts)) Termination WF_REL_TAC `measure typ_size` >> rw [] >> Induct_on `ts` >> rw [definition "typ_size_def"] >> res_tac >> decide_tac End Definition convert_value_def: convert_value (IntegerT size) n = IntV (&n) size End Definition bytes_to_llair_value_def: bytes_to_llair_value t bs = (bytes_to_value (λn t w. convert_value t w) (type_to_shape t) bs) End Definition unconvert_value_def: unconvert_value (IntV i size) = ((size + 7) DIV 8, i2n (IntV i size)) End Definition llair_value_to_bytes_def: llair_value_to_bytes v = value_to_bytes unconvert_value v End (* END Functions to interface to the generic memory model *) Definition update_results_def: update_results xvs s = s with locals := s.locals |++ xvs End Inductive get_obs: (∀s ptr bytes x. flookup s.glob_addrs x = Some ptr ⇒ get_obs s ptr bytes (W x bytes)) ∧ (∀s ptr bytes. ptr ∉ FRANGE s.glob_addrs ⇒ get_obs s ptr bytes Tau) End Inductive step_inst: (∀s ves rs. list_rel (eval_exp s) (map snd ves) rs ⇒ step_inst s (Move ves) Tau (update_results (map (λ(v,r). (v, r)) (zip (map fst ves, rs))) s)) ∧ (∀s x t e size ptr freeable interval bytes. eval_exp s e (FlatV ptr) ∧ interval = Interval freeable (i2n ptr) (i2n ptr + size) ∧ is_allocated interval s.heap ∧ bytes = map snd (get_bytes s.heap interval) ⇒ step_inst s (Load (Var_name x t) e size) Tau (update_results [(Var_name x t, fst (bytes_to_llair_value t bytes))] s)) ∧ (∀s e1 e2 size ptr bytes freeable interval r obs. eval_exp s e1 (FlatV ptr) ∧ eval_exp s e2 r ∧ interval = Interval freeable (i2n ptr) (i2n ptr + size) ∧ is_allocated interval s.heap ∧ bytes = llair_value_to_bytes r ∧ length bytes = size ∧ get_obs s (i2n ptr) bytes obs ⇒ step_inst s (Store e1 e2 size) obs (s with heap := set_bytes () bytes (i2n ptr) s.heap)) ∧ (* TODO memset *) (∀s e1 e2 e3 dest_ptr src_ptr size src_interval freeable1 freeable2 bytes. eval_exp s e1 (FlatV dest_ptr) ∧ eval_exp s e2 (FlatV src_ptr) ∧ eval_exp s e3 (FlatV size) ∧ src_interval = Interval freeable1 (i2n src_ptr) (i2n src_ptr + i2n size) ∧ is_allocated src_interval s.heap ∧ is_allocated (Interval freeable2 (i2n dest_ptr) (i2n dest_ptr + i2n size)) s.heap ∧ (* TODO Question: should we allow overlap? *) bytes = map snd (get_bytes s.heap src_interval) ⇒ step_inst s (Memcpy e1 e2 e3) Tau (s with heap := set_bytes () bytes (i2n dest_ptr) s.heap)) ∧ (* TODO memmove *) (∀s v e1 e2 n size ptr new_h size_size. eval_exp s e1 (FlatV n) ∧ eval_exp s e2 (FlatV (IntV (&size) size_size)) ∧ allocate s.heap (i2n n * size) () (ptr, new_h) ∧ nfits ptr pointer_size ⇒ step_inst s (Alloc v e1 e2) Tau (update_results [(v, FlatV (n2i ptr pointer_size))] (s with heap := new_h))) ∧ (∀s e ptr. eval_exp s e (FlatV ptr) ⇒ step_inst s (Free e) Tau (s with heap := deallocate [A (i2n ptr)] s.heap)) ∧ (∀s x t nondet. value_type t nondet ⇒ step_inst s (NondetI (Var_name x t)) Tau (update_results [(Var_name x t, nondet)] s)) End Inductive step_term: (∀prog s e table default idx fname bname idx_size. eval_exp s e (FlatV (IntV idx idx_size)) ∧ Lab_name fname bname = (case alookup table idx of Some lab => lab | None => default) ⇒ step_term prog s (Switch e table default) (s with bp := Lab_name fname bname)) ∧ (∀prog s e labs i idx idx_size. eval_exp s e (FlatV (IntV (&idx) idx_size)) ∧ idx < length labs ⇒ step_term prog s (Iswitch e labs) (s with bp := el i labs)) ∧ (∀prog s v fname bname es t ret1 ret2 vals f. alookup prog.functions fname = Some f ∧ f.entry = Lab_name fname bname ∧ list_rel (eval_exp s) es vals ⇒ step_term prog s (Call v (Lab_name fname bname) es t ret1 ret2) <| bp := Lab_name fname bname; glob_addrs := s.glob_addrs; locals := alist_to_fmap (zip (f.params, vals)); stack := <| ret := ret1; exn_ret := ret2; ret_var := v; saved_locals := s.locals |> :: s.stack; heap := s.heap |>) ∧ (∀prog s e r top rest. eval_exp s e r ∧ s.stack = top::rest ⇒ step_term prog s (Return e) <| bp := top.ret; glob_addrs := s.glob_addrs; locals := top.saved_locals |+ (top.ret_var, r); stack := rest; heap := s.heap |>) ∧ (∀prog s. step_term prog s Exit (s with status := Complete)) (* TODO Throw *) End (* With function calls terminating blocks, it's very easy to get rid of the * instruction pointer and do a big-step evaluation for each block *) Inductive step_block: (∀prog s1 t s2. step_term prog s1 t s2 ⇒ step_block prog s1 [] [] t s2) ∧ (∀prog s1 i1 i2 l1 is t s2. step_inst s1 i1 l1 s2 ∧ (¬?l2 s3. step_inst s2 i2 l2 s3) ⇒ step_block prog s1 (i1::i2::is) [l1] t (s2 with status := Stuck)) ∧ (∀prog s1 i l is ls t s2 s3. step_inst s1 i l s2 ∧ step_block prog s2 is ls t s3 ⇒ step_block prog s1 (i::is) (l::ls) t s3) End Inductive get_block: ∀prog bp fname bname f b. bp = Lab_name fname bname ∧ alookup prog.functions fname = Some f ∧ alookup f.cfg bp = Some b ⇒ get_block prog bp b End Inductive step: ∀prog s b ls s'. get_block prog s.bp b ∧ step_block prog s b.cmnd ls b.term s' ∧ s.status = Partial ⇒ step prog s ls s' End Definition sem_def: sem p s1 = { l1 | ∃path l2. l1 ∈ observation_prefixes ((last path).status, flat l2) ∧ toList (labels path) = Some l2 ∧ finite path ∧ okpath (step p) path ∧ first path = s1 } End export_theory ();