(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Qset - Set with (signed) rational multiplicity for each element *) open Import0 include Qset_intf module Make (Elt : sig type t [@@deriving compare, sexp_of] end) = struct module M = Map.Make (Elt) type elt = Elt.t type t = Q.t M.t let compare = M.compare Q.compare let equal = M.equal Q.equal let hash_fold_t hash_fold_elt s m = let hash_fold_q s q = Hash.fold_int s (Hashtbl.hash q) in M.fold m ~init:(Hash.fold_int s (M.length m)) ~f:(fun ~key ~data state -> hash_fold_q (hash_fold_elt state key) data) let sexp_of_t s = let sexp_of_q q = Sexp.Atom (Q.to_string q) in List.sexp_of_t (Sexplib.Conv.sexp_of_pair Elt.sexp_of_t sexp_of_q) (M.to_alist s) let t_of_sexp elt_of_sexp sexp = let q_of_sexp = function | Sexp.Atom s -> Q.of_string s | _ -> assert false in List.fold_left ~f:(fun m (key, data) -> M.add_exn m ~key ~data) ~init:M.empty (List.t_of_sexp (Sexplib.Conv.pair_of_sexp elt_of_sexp q_of_sexp) sexp) let pp sep pp_elt fs s = List.pp sep pp_elt fs (M.to_alist s) let empty = M.empty let of_ = M.singleton let if_nz q = if Q.equal Q.zero q then None else Some q let add m x i = M.change m x ~f:(function Some j -> if_nz Q.(i + j) | None -> if_nz i) let remove m x = M.remove m x let find_and_remove = M.find_and_remove let union m n = M.merge m n ~f:(fun ~key:_ -> function | `Both (i, j) -> if_nz Q.(i + j) | `Left i | `Right i -> Some i ) let map m ~f = let m' = empty in let m, m' = M.fold m ~init:(m, m') ~f:(fun ~key:x ~data:i (m, m') -> let x', i' = f x i in if x' == x then if Q.equal i' i then (m, m') else (M.set m ~key:x ~data:i', m') else (M.remove m x, add m' x' i') ) in M.fold m' ~init:m ~f:(fun ~key:x ~data:i m -> add m x i) let map_counts m ~f = M.mapi ~f:(fun ~key ~data -> f key data) m let is_empty = M.is_empty let length m = M.length m let count m x = match M.find m x with Some q -> q | None -> Q.zero let choose = M.choose let pop = M.pop let min_elt = M.min_elt let pop_min_elt = M.pop_min_elt let to_list m = M.to_alist m let iter m ~f = M.iteri ~f:(fun ~key ~data -> f key data) m let exists m ~f = M.existsi ~f:(fun ~key ~data -> f key data) m let for_all m ~f = M.for_alli ~f:(fun ~key ~data -> f key data) m let fold m ~f ~init = M.fold ~f:(fun ~key ~data -> f key data) m ~init end