(* * Copyright (c) 2018-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) let%test_module _ = ( module struct open Equality (* let () = Trace.init ~margin:160 ~config:all () *) let () = Trace.init ~margin:68 ~config:none () let printf pp = Format.printf "@\n%a@." pp let pp = printf pp let pp_classes = printf pp_classes let of_eqs = List.fold ~init:true_ ~f:(fun r (a, b) -> and_eq a b r) let i8 = Typ.integer ~bits:8 let i64 = Typ.integer ~bits:64 let ( ! ) i = Exp.integer (Z.of_int i) Typ.siz let ( + ) = Exp.add Typ.siz let ( - ) = Exp.sub Typ.siz let ( * ) = Exp.mul Typ.siz let f = Exp.convert ~dst:i64 ~src:i8 let g = Exp.rem let wrt = Var.Set.empty let t_, wrt = Var.fresh "t" ~wrt let u_, wrt = Var.fresh "u" ~wrt let v_, wrt = Var.fresh "v" ~wrt let w_, wrt = Var.fresh "w" ~wrt let x_, wrt = Var.fresh "x" ~wrt let y_, wrt = Var.fresh "y" ~wrt let z_, _ = Var.fresh "z" ~wrt let t = Exp.var t_ let u = Exp.var u_ let v = Exp.var v_ let w = Exp.var w_ let x = Exp.var x_ let y = Exp.var y_ let z = Exp.var z_ let f1 = of_eqs [(!0, !1)] let%test _ = is_false f1 let%expect_test _ = pp f1 ; [%expect {| {sat= false; rep= [[0 ↦ ]; [1 ↦ ]]} |}] let%test _ = is_false (and_eq !1 !1 f1) let f2 = of_eqs [(x, x + !1)] let%test _ = is_false f2 let%expect_test _ = pp f2 ; [%expect {| {sat= false; rep= [[%x_5 ↦ ]; [1 ↦ ]]} |}] let f3 = of_eqs [(x + !0, x + !1)] let%test _ = is_false f3 let%expect_test _ = pp f3 ; [%expect {| {sat= false; rep= [[%x_5 ↦ ]; [1 ↦ ]]} |}] let f4 = of_eqs [(x, y); (x + !0, y + !1)] let%test _ = is_false f4 let%expect_test _ = pp f4 ; [%expect {| {sat= false; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [1 ↦ ]]} |}] let t1 = of_eqs [(!1, !1)] let%test _ = is_true t1 let t2 = of_eqs [(x, x)] let%test _ = is_true t2 let%test _ = is_false (and_ f3 t2) let%test _ = is_false (and_ t2 f3) let r0 = true_ let%expect_test _ = pp r0 ; [%expect {| {sat= true; rep= []} |}] let%expect_test _ = pp_classes r0 ; [%expect {| |}] let%test _ = difference r0 (f x) (f x) |> Poly.equal (Some (Z.of_int 0)) let%test _ = difference r0 !4 !3 |> Poly.equal (Some (Z.of_int 1)) let r1 = of_eqs [(x, y)] let%expect_test _ = pp_classes r1 ; pp r1 ; [%expect {| %x_5 = %y_6 {sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]]} |}] let%test _ = entails_eq r1 x y let r2 = of_eqs [(x, y); (f x, y); (f y, z)] let%expect_test _ = pp_classes r2 ; pp r2 ; [%expect {| %x_5 = %y_6 = %z_7 = ((i64)(i8) %x_5) {sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [%z_7 ↦ %x_5]; [((i64)(i8) %x_5) ↦ %x_5]; [(i64)(i8) ↦ ]]} |}] let%test _ = entails_eq r2 x z let%test _ = entails_eq (or_ r1 r2) x y let%test _ = not (entails_eq (or_ r1 r2) x z) let%test _ = entails_eq (or_ f1 r2) x z let%test _ = entails_eq (or_ r2 f3) x z let%test _ = entails_eq r2 (f y) y let%test _ = entails_eq r2 (f x) (f z) let%test _ = entails_eq r2 (g x y) (g z y) let%test _ = entails_eq (rename r2 Var.Subst.(extend empty ~replace:x_ ~with_:w_)) w z let%test _ = r2 == rename r2 Var.Subst.(extend empty ~replace:w_ ~with_:x_) let%test _ = entails_eq (rename r2 Var.Subst.( empty |> extend ~replace:x_ ~with_:v_ |> extend ~replace:y_ ~with_:w_)) v w let%test _ = difference (or_ r1 r2) x z |> Poly.equal None let r3 = of_eqs [(g y z, w); (v, w); (g y w, t); (x, v); (x, u); (u, z)] let%expect_test _ = pp_classes r3 ; pp r3 ; [%expect {| %t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = (%y_6 rem %v_3) = (%y_6 rem %z_7) {sat= true; rep= [[%t_1 ↦ ]; [%u_2 ↦ %t_1]; [%v_3 ↦ %t_1]; [%w_4 ↦ %t_1]; [%x_5 ↦ %t_1]; [%y_6 ↦ ]; [%z_7 ↦ %t_1]; [(%y_6 rem %v_3) ↦ %t_1]; [(%y_6 rem %z_7) ↦ %t_1]; [(rem %y_6) ↦ ]; [rem ↦ ]]} |}] let%test _ = entails_eq r3 t z let%test _ = entails_eq r3 x z let%test _ = entails_eq (and_ r2 r3) x z let r4 = of_eqs [(w + !2, x - !3); (x - !5, y + !7); (y, z - !4)] let%expect_test _ = pp_classes r4 ; pp r4 ; [%expect {| (%z_7 + -4) = %y_6 ∧ (%z_7 + 3) = %w_4 ∧ (%z_7 + 8) = %x_5 {sat= true; rep= [[%w_4 ↦ (%z_7 + 3)]; [%x_5 ↦ (%z_7 + 8)]; [%y_6 ↦ (%z_7 + -4)]; [%z_7 ↦ ]; [1 ↦ ]]} |}] let%test _ = entails_eq r4 x (w + !5) let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5)) let r5 = of_eqs [(x, y); (g w x, y); (g w y, f z)] let%test _ = Set.equal (fv r5) (Set.of_list (module Var) [w_; x_; y_; z_]) let r6 = of_eqs [(x, !1); (!1, y)] let%expect_test _ = pp_classes r6 ; pp r6 ; [%expect {| 1 = %x_5 = %y_6 {sat= true; rep= [[%x_5 ↦ 1]; [%y_6 ↦ 1]; [1 ↦ ]]} |}] let%test _ = entails_eq r6 x y let r7 = of_eqs [(v, x); (w, z); (y, z)] let%expect_test _ = pp_classes r7 ; pp r7 ; pp (and_eq x z r7) ; pp_classes (and_eq x z r7) ; [%expect {| %v_3 = %x_5 ∧ %w_4 = %y_6 = %z_7 {sat= true; rep= [[%v_3 ↦ ]; [%w_4 ↦ ]; [%x_5 ↦ %v_3]; [%y_6 ↦ %w_4]; [%z_7 ↦ %w_4]]} {sat= true; rep= [[%v_3 ↦ ]; [%w_4 ↦ %v_3]; [%x_5 ↦ %v_3]; [%y_6 ↦ %v_3]; [%z_7 ↦ %v_3]]} %v_3 = %w_4 = %x_5 = %y_6 = %z_7 |}] let r7' = and_eq x z r7 let%expect_test _ = pp_classes r7' ; pp r7' ; [%expect {| %v_3 = %w_4 = %x_5 = %y_6 = %z_7 {sat= true; rep= [[%v_3 ↦ ]; [%w_4 ↦ %v_3]; [%x_5 ↦ %v_3]; [%y_6 ↦ %v_3]; [%z_7 ↦ %v_3]]} |}] let%test _ = normalize r7' w |> Exp.equal v let%test _ = entails_eq (of_eqs [(g w x, g y z); (x, z)]) (g w x) (g w z) let%test _ = entails_eq (of_eqs [(g w x, g y w); (x, z)]) (g w x) (g w z) let r8 = of_eqs [(x + !42, (!3 * y) + (!13 * z)); (!13 * z, x)] let%expect_test _ = pp_classes r8 ; pp r8 ; [%expect {| (13 × %z_7) = %x_5 ∧ 14 = %y_6 {sat= true; rep= [[%x_5 ↦ (13 × %z_7)]; [%y_6 ↦ 14]; [%z_7 ↦ ]; [1 ↦ ]]} |}] let%test _ = entails_eq r8 y !14 let r9 = of_eqs [(x, z - !16)] let%expect_test _ = pp_classes r9 ; pp r9 ; [%expect {| (%z_7 + -16) = %x_5 {sat= true; rep= [[%x_5 ↦ (%z_7 + -16)]; [%z_7 ↦ ]; [1 ↦ ]]} |}] let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8)) let r10 = of_eqs [(!16, z - x)] let%expect_test _ = pp_classes r10 ; pp r10 ; Format.printf "@.%a@." Exp.pp (z - (x + !8)) ; Format.printf "@.%a@." Exp.pp (normalize r10 (z - (x + !8))) ; Format.printf "@.%a@." Exp.pp (x + !8 - z) ; Format.printf "@.%a@." Exp.pp (normalize r10 (x + !8 - z)) ; [%expect {| (%z_7 + -16) = %x_5 {sat= true; rep= [[%x_5 ↦ (%z_7 + -16)]; [%z_7 ↦ ]; [16 ↦ ]]} (-1 × %x_5 + %z_7 + -8) 8 (%x_5 + -1 × %z_7 + 8) -8 |}] let%test _ = difference r10 z (x + !8) |> Poly.equal (Some (Z.of_int 8)) let%test _ = difference r10 (x + !8) z |> Poly.equal (Some (Z.of_int (-8))) let r11 = of_eqs [(!16, z - x); (x + !8 - z, z - !16 + !8 - z)] let%expect_test _ = pp_classes r11 ; [%expect {| (%z_7 + -16) = %x_5 |}] let r12 = of_eqs [(!16, z - x); (x + !8 - z, z + !16 + !8 - z)] let%expect_test _ = pp_classes r12 ; [%expect {| (%z_7 + -16) = %x_5 |}] end )