(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (* Proofs about llvm to llair translation *) open HolKernel boolLib bossLib Parse lcsymtacs; open listTheory arithmeticTheory pred_setTheory finite_mapTheory wordsTheory integer_wordTheory; open rich_listTheory pathTheory; open settingsTheory miscTheory memory_modelTheory; open llvmTheory llvm_propTheory llvm_ssaTheory llairTheory llair_propTheory llvm_to_llairTheory; new_theory "llvm_to_llair_prop"; set_grammar_ancestry ["llvm", "llair", "llair_prop", "llvm_to_llair", "llvm_ssa"]; numLib.prefer_num (); Inductive v_rel: (∀w. v_rel (FlatV (PtrV w)) (FlatV (IntV (w2i w) llair$pointer_size))) ∧ (∀w. v_rel (FlatV (W1V w)) (FlatV (IntV (w2i w) 1))) ∧ (∀w. v_rel (FlatV (W8V w)) (FlatV (IntV (w2i w) 8))) ∧ (∀w. v_rel (FlatV (W32V w)) (FlatV (IntV (w2i w) 32))) ∧ (∀w. v_rel (FlatV (W64V w)) (FlatV (IntV (w2i w) 64))) ∧ (∀vs1 vs2. list_rel v_rel vs1 vs2 ⇒ v_rel (AggV vs1) (AggV vs2)) End Definition take_to_call_def: (take_to_call [] = []) ∧ (take_to_call (i::is) = if terminator i ∨ is_call i then [i] else i :: take_to_call is) End Definition dest_llair_lab_def: dest_llair_lab (Lab_name f b) = (f, b) End Inductive pc_rel: (* LLVM side points to a normal instruction *) (∀prog emap ip bp d b idx b' prev_i fname. (* Both are valid pointers to blocks in the same function *) dest_fn ip.f = fst (dest_llair_lab bp) ∧ alookup prog ip.f = Some d ∧ alookup d.blocks ip.b = Some b ∧ ip.i = Offset idx ∧ idx < length b.body ∧ get_block (translate_prog prog) bp b' ∧ (* The LLVM side is at the start of a block, or immediately following a * call, which will also start a new block in llair *) (ip.i ≠ Offset 0 ⇒ get_instr prog (ip with i := Offset (idx - 1)) (Inl prev_i) ∧ is_call prev_i) ∧ ip.f = Fn fname ∧ (∃regs_to_keep. b' = fst (translate_instrs fname emap regs_to_keep (take_to_call (drop idx b.body)))) ⇒ pc_rel prog emap ip bp) ∧ (* If the LLVM side points to phi instructions, the llair side * should point to a block generated from them *) (∀prog emap ip bp b from_l phis. get_instr prog ip (Inr (from_l, phis)) ∧ (* TODO: constrain b to be generated from the phis *) get_block (translate_prog prog) bp b ⇒ pc_rel prog emap ip bp) End Definition untranslate_reg_def: untranslate_reg (Var_name x t) = Reg x End (* Define when an LLVM state is related to a llair one. * Parameterised on a map for locals relating LLVM registers to llair * expressions that compute the value in that register. This corresponds to part * of the translation's state. *) Definition mem_state_rel_def: mem_state_rel prog emap (s:llvm$state) (s':llair$state) ⇔ (* Live LLVM registers are mapped and have a related value in the emap * (after evaluating) *) (∀r. r ∈ live prog s.ip ⇒ (∃v v' e. v_rel v.value v' ∧ flookup s.locals r = Some v ∧ flookup emap r = Some e ∧ eval_exp s' e v' ∧ (* Each register used in e is dominated by an assignment to that * register for the entire live range of r. *) (∀ip1 r'. ip1.f = s.ip.f ∧ r ∈ live prog ip1 ∧ r' ∈ exp_uses e ⇒ ∃ip2. untranslate_reg r' ∈ assigns prog ip2 ∧ dominates prog ip2 ip1))) ∧ reachable prog s.ip ∧ erase_tags s.heap = s'.heap ∧ s.status = s'.status End (* Define when an LLVM state is related to a llair one * Parameterised on a map for locals relating LLVM registers to llair * expressions that compute the value in that register. This corresponds to part * of the translation's state. *) Definition state_rel_def: state_rel prog emap (s:llvm$state) (s':llair$state) ⇔ (s.status = Partial ⇒ pc_rel prog emap s.ip s'.bp) ∧ mem_state_rel prog emap s s' End Theorem mem_state_ignore_bp[simp]: ∀prog emap s s' b. mem_state_rel prog emap s (s' with bp := b) ⇔ mem_state_rel prog emap s s' Proof rw [mem_state_rel_def] >> eq_tac >> rw [] >> first_x_assum drule >> rw [] >> `eval_exp (s' with bp := b) e v' ⇔ eval_exp s' e v'` by (irule eval_exp_ignores >> rw []) >> metis_tac [] QED Triviality lemma: ((s:llair$state) with status := Complete code).locals = s.locals Proof rw [] QED Theorem mem_state_rel_exited: ∀prog emap s s' code. mem_state_rel prog emap s s' ⇒ mem_state_rel prog emap (s with status := Complete code) (s' with status := Complete code) Proof rw [mem_state_rel_def] >> metis_tac [eval_exp_ignores, lemma] QED Theorem mem_state_rel_no_update: ∀prog emap s1 s1' v res_v r i i'. assigns prog s1.ip = {} ∧ mem_state_rel prog emap s1 s1' ∧ v_rel v.value res_v ∧ i ∈ next_ips prog s1.ip ⇒ mem_state_rel prog emap (s1 with ip := i) s1' Proof rw [mem_state_rel_def] >- ( first_x_assum (qspec_then `r` mp_tac) >> simp [Once live_gen_kill, PULL_EXISTS] >> metis_tac [next_ips_same_func]) >- metis_tac [next_ips_reachable] QED Theorem mem_state_rel_update: ∀prog emap s1 s1' v res_v r e i. is_ssa prog ∧ assigns prog s1.ip = {r} ∧ mem_state_rel prog emap s1 s1' ∧ eval_exp s1' e res_v ∧ v_rel v.value res_v ∧ i ∈ next_ips prog s1.ip ∧ (∀r_use. r_use ∈ exp_uses e ⇒ ∃r_tmp. r_use ∈ exp_uses (translate_arg emap (Variable r_tmp)) ∧ r_tmp ∈ live prog s1.ip) ⇒ mem_state_rel prog (emap |+ (r, e)) (s1 with <|ip := i; locals := s1.locals |+ (r, v) |>) s1' Proof rw [mem_state_rel_def] >- ( rw [FLOOKUP_UPDATE] >- ( HINT_EXISTS_TAC >> rw [] >> first_x_assum drule >> rw [] >> first_x_assum drule >> rw [] >> fs [exp_uses_def, translate_arg_def] >> pop_assum (qspec_then `s1.ip` mp_tac) >> simp [] >> disch_then drule >> rw [] >> `dominates prog s1.ip ip1` by ( irule ssa_dominates_live_range_lem >> rw [] >> metis_tac [next_ips_same_func]) >> metis_tac [dominates_trans]) >> `i.f = s1.ip.f` by metis_tac [next_ips_same_func] >> simp [] >> first_x_assum irule >> simp [Once live_gen_kill, PULL_EXISTS, METIS_PROVE [] ``x ∨ y ⇔ (~y ⇒ x)``] >> metis_tac []) >- metis_tac [next_ips_reachable] QED Theorem mem_state_rel_update_keep: ∀prog emap s1 s1' v res_v r i ty. is_ssa prog ∧ assigns prog s1.ip = {r} ∧ mem_state_rel prog emap s1 s1' ∧ v_rel v.value res_v ∧ reachable prog s1.ip ∧ i ∈ next_ips prog s1.ip ⇒ mem_state_rel prog (emap |+ (r, Var (translate_reg r ty))) (s1 with <|ip := i; locals := s1.locals |+ (r, v)|>) (s1' with locals := s1'.locals |+ (translate_reg r ty, res_v)) Proof rw [mem_state_rel_def] >- ( rw [FLOOKUP_UPDATE] >- ( simp [Once eval_exp_cases] >> qexists_tac `res_v` >> rw [exp_uses_def] >> rw [FLOOKUP_UPDATE] >> Cases_on `r` >> simp [translate_reg_def, untranslate_reg_def] >> `∃ip. ip.f = ip1.f ∧ Reg s ∈ uses prog ip` by ( qabbrev_tac `x = (ip1.f = i.f)` >> fs [live_def] >> qexists_tac `last (ip1::path')` >> rw [] >> irule good_path_same_func >> qexists_tac `ip1::path'` >> rw [MEM_LAST] >> metis_tac []) >> metis_tac [ssa_dominates_live_range]) >> first_x_assum (qspec_then `r'` mp_tac) >> simp [Once live_gen_kill, PULL_EXISTS] >> impl_tac >> rw [] >- metis_tac [] >> ntac 3 HINT_EXISTS_TAC >> rw [] >- ( `DRESTRICT (s1' with locals := s1'.locals |+ (translate_reg r ty,res_v)).locals (exp_uses e) = DRESTRICT s1'.locals (exp_uses e)` suffices_by metis_tac [eval_exp_ignores_unused] >> rw [] >> first_x_assum (qspecl_then [`s1.ip`, `translate_reg r ty`] mp_tac) >> simp [Once live_gen_kill] >> impl_tac >- metis_tac [] >> rw [] >> `ip2 = s1.ip` by ( fs [is_ssa_def, EXTENSION, IN_DEF] >> Cases_on `r` >> fs [translate_reg_def, untranslate_reg_def] >> metis_tac [reachable_dominates_same_func]) >> metis_tac [dominates_irrefl]) >- ( first_x_assum irule >> rw [] >> metis_tac [next_ips_same_func])) >- metis_tac [next_ips_reachable] QED Theorem v_rel_bytes: ∀v v'. v_rel v v' ⇒ llvm_value_to_bytes v = llair_value_to_bytes v' Proof ho_match_mp_tac v_rel_ind >> rw [v_rel_cases, llvm_value_to_bytes_def, llair_value_to_bytes_def] >> rw [value_to_bytes_def, llvmTheory.unconvert_value_def, w2n_i2n, llairTheory.unconvert_value_def, llairTheory.pointer_size_def, llvmTheory.pointer_size_def] >> pop_assum mp_tac >> qid_spec_tac `vs1` >> Induct_on `vs2` >> rw [] >> rw [] QED Theorem translate_constant_correct_lem: (∀c s prog emap s' (g : glob_var |-> β # word64). mem_state_rel prog emap s s' ⇒ ∃v'. eval_exp s' (translate_const c) v' ∧ v_rel (eval_const g c) v') ∧ (∀(cs : (ty # const) list) s prog emap s' (g : glob_var |-> β # word64). mem_state_rel prog emap s s' ⇒ ∃v'. list_rel (eval_exp s') (map (translate_const o snd) cs) v' ∧ list_rel v_rel (map (eval_const g o snd) cs) v') ∧ (∀(tc : ty # const) s prog emap s' (g : glob_var |-> β # word64). mem_state_rel prog emap s s' ⇒ ∃v'. eval_exp s' (translate_const (snd tc)) v' ∧ v_rel (eval_const g (snd tc)) v') Proof ho_match_mp_tac const_induction >> rw [translate_const_def] >> simp [Once eval_exp_cases, eval_const_def] >- ( Cases_on `s` >> simp [eval_const_def, translate_size_def, v_rel_cases] >> metis_tac [truncate_2comp_i2w_w2i, dimindex_1, dimindex_8, dimindex_32, dimindex_64]) >- ( simp [v_rel_cases, PULL_EXISTS, MAP_MAP_o] >> fs [combinTheory.o_DEF, pairTheory.LAMBDA_PROD] >> metis_tac []) >- ( simp [v_rel_cases, PULL_EXISTS, MAP_MAP_o] >> fs [combinTheory.o_DEF, pairTheory.LAMBDA_PROD] >> metis_tac []) (* TODO: unimplemented stuff *) >- cheat >- cheat >- cheat >- cheat QED Theorem translate_constant_correct: ∀c s prog emap s' g. mem_state_rel prog emap s s' ⇒ ∃v'. eval_exp s' (translate_const c) v' ∧ v_rel (eval_const g c) v' Proof metis_tac [translate_constant_correct_lem] QED Theorem translate_const_no_reg[simp]: ∀c. r ∉ exp_uses (translate_const c) Proof ho_match_mp_tac translate_const_ind >> rw [translate_const_def, exp_uses_def, MEM_MAP, METIS_PROVE [] ``x ∨ y ⇔ (~x ⇒ y)``] >> TRY pairarg_tac >> fs [] >- metis_tac [] >- metis_tac [] >> (* TODO: unimplemented stuff *) cheat QED Theorem translate_arg_correct: ∀s a v prog emap s'. mem_state_rel prog emap s s' ∧ eval s a = Some v ∧ arg_to_regs a ⊆ live prog s.ip ⇒ ∃v'. eval_exp s' (translate_arg emap a) v' ∧ v_rel v.value v' Proof Cases_on `a` >> rw [eval_def, translate_arg_def] >> rw [] >- metis_tac [translate_constant_correct] >> CASE_TAC >> fs [PULL_EXISTS, mem_state_rel_def, arg_to_regs_def] >> res_tac >> rfs [] >> metis_tac [] QED Theorem is_allocated_mem_state_rel: ∀prog emap s1 s1'. mem_state_rel prog emap s1 s1' ⇒ (∀i. is_allocated i s1.heap ⇔ is_allocated i s1'.heap) Proof rw [mem_state_rel_def, is_allocated_def, erase_tags_def] >> pop_assum mp_tac >> pop_assum (mp_tac o GSYM) >> rw [] QED Theorem restricted_i2w_11: ∀i (w:'a word). INT_MIN (:'a) ≤ i ∧ i ≤ INT_MAX (:'a) ⇒ (i2w i : 'a word) = i2w (w2i w) ⇒ i = w2i w Proof rw [i2w_def] >- ( Cases_on `n2w (Num (-i)) = INT_MINw` >> rw [w2i_neg, w2i_INT_MINw] >> fs [word_L_def] >> `?j. 0 ≤ j ∧ i = -j` by intLib.COOPER_TAC >> rw [] >> fs [] >> `INT_MIN (:'a) < dimword (:'a)` by metis_tac [INT_MIN_LT_DIMWORD] >> `Num j MOD dimword (:'a) = Num j` by (irule LESS_MOD >> intLib.COOPER_TAC) >> fs [] >- intLib.COOPER_TAC >- ( `Num j < INT_MIN (:'a)` by intLib.COOPER_TAC >> fs [w2i_n2w_pos, integerTheory.INT_OF_NUM])) >- ( fs [GSYM INT_MAX, INT_MAX_def] >> `Num i < INT_MIN (:'a)` by intLib.COOPER_TAC >> rw [w2i_n2w_pos, integerTheory.INT_OF_NUM] >> intLib.COOPER_TAC) QED Theorem translate_sub_correct: ∀prog emap s1 s1' nsw nuw ty v1 v1' v2 v2' e2' e1' result. mem_state_rel prog emap s1 s1' ∧ do_sub nuw nsw v1 v2 ty = Some result ∧ eval_exp s1' e1' v1' ∧ v_rel v1.value v1' ∧ eval_exp s1' e2' v2' ∧ v_rel v2.value v2' ⇒ ∃v3'. eval_exp s1' (Sub (translate_ty ty) e1' e2') v3' ∧ v_rel result.value v3' Proof rw [] >> simp [Once eval_exp_cases] >> fs [do_sub_def] >> rw [] >> rfs [v_rel_cases] >> rw [] >> fs [] >> BasicProvers.EVERY_CASE_TAC >> fs [PULL_EXISTS, translate_ty_def, translate_size_def] >> pairarg_tac >> fs [] >> fs [pairTheory.PAIR_MAP, wordsTheory.FST_ADD_WITH_CARRY] >> rw [] >> qmatch_goalsub_abbrev_tac `w2i (-1w * w1 + w2)` >> qexists_tac `w2i w2` >> qexists_tac `w2i w1` >> simp [] >> unabbrev_all_tac >> rw [] >- ( irule restricted_i2w_11 >> simp [word_sub_i2w] >> `dimindex (:1) = 1` by rw [] >> drule truncate_2comp_i2w_w2i >> rw [word_sub_i2w] >> metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:1)``, SIMP_CONV (srw_ss()) [] ``INT_MAX (:1)``]) >- ( irule restricted_i2w_11 >> simp [word_sub_i2w] >> `dimindex (:8) = 8` by rw [] >> drule truncate_2comp_i2w_w2i >> rw [word_sub_i2w] >> metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:8)``, SIMP_CONV (srw_ss()) [] ``INT_MAX (:8)``]) >- ( irule restricted_i2w_11 >> simp [word_sub_i2w] >> `dimindex (:32) = 32` by rw [] >> drule truncate_2comp_i2w_w2i >> rw [word_sub_i2w] >> metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:32)``, SIMP_CONV (srw_ss()) [] ``INT_MAX (:32)``]) >- ( irule restricted_i2w_11 >> simp [word_sub_i2w] >> `dimindex (:64) = 64` by rw [] >> drule truncate_2comp_i2w_w2i >> rw [word_sub_i2w] >> metis_tac [w2i_ge, w2i_le, SIMP_CONV (srw_ss()) [] ``INT_MIN (:64)``, SIMP_CONV (srw_ss()) [] ``INT_MAX (:64)``]) QED Theorem translate_extract_correct: ∀prog emap s1 s1' a v v1' e1' cs ns result. mem_state_rel prog emap s1 s1' ∧ map (λci. signed_v_to_num (eval_const s1.globals ci)) cs = map Some ns ∧ extract_value v ns = Some result ∧ eval_exp s1' e1' v1' ∧ v_rel v v1' ⇒ ∃v2'. eval_exp s1' (foldl (λe c. Select e (translate_const c)) e1' cs) v2' ∧ v_rel result v2' Proof Induct_on `cs` >> rw [] >> fs [extract_value_def] >- metis_tac [] >> first_x_assum irule >> Cases_on `ns` >> fs [] >> qmatch_goalsub_rename_tac `translate_const c` >> `?v2'. eval_exp s1' (translate_const c) v2' ∧ v_rel (eval_const s1.globals c) v2'` by metis_tac [translate_constant_correct] >> Cases_on `v` >> fs [extract_value_def] >> qpat_x_assum `v_rel (AggV _) _` mp_tac >> simp [Once v_rel_cases] >> rw [] >> simp [Once eval_exp_cases, PULL_EXISTS] >> fs [LIST_REL_EL_EQN] >> qmatch_assum_rename_tac `_ = map Some is` >> Cases_on `eval_const s1.globals c` >> fs [signed_v_to_num_def, signed_v_to_int_def] >> rw [] >> `?i. v2' = FlatV i` by fs [v_rel_cases] >> fs [] >> qmatch_assum_rename_tac `option_join _ = Some x` >> `?size. i = IntV (&x) size` suffices_by metis_tac [] >> rw [] >> qpat_x_assum `v_rel _ _` mp_tac >> simp [v_rel_cases] >> rw [] >> fs [signed_v_to_int_def] >> rw [] >> intLib.COOPER_TAC QED Theorem translate_update_correct: ∀prog emap s1 s1' a v1 v1' v2 v2' e2 e2' e1' cs ns result. mem_state_rel prog emap s1 s1' ∧ map (λci. signed_v_to_num (eval_const s1.globals ci)) cs = map Some ns ∧ insert_value v1 v2 ns = Some result ∧ eval_exp s1' e1' v1' ∧ v_rel v1 v1' ∧ eval_exp s1' e2' v2' ∧ v_rel v2 v2' ⇒ ∃v3'. eval_exp s1' (translate_updatevalue e1' e2' cs) v3' ∧ v_rel result v3' Proof Induct_on `cs` >> rw [] >> fs [insert_value_def, translate_updatevalue_def] >- metis_tac [] >> simp [Once eval_exp_cases, PULL_EXISTS] >> Cases_on `ns` >> fs [] >> Cases_on `v1` >> fs [insert_value_def] >> rename [`insert_value (el x _) _ ns`] >> Cases_on `insert_value (el x l) v2 ns` >> fs [] >> rw [] >> qpat_x_assum `v_rel (AggV _) _` mp_tac >> simp [Once v_rel_cases] >> rw [] >> simp [v_rel_cases] >> qmatch_goalsub_rename_tac `translate_const c` >> qexists_tac `vs2` >> simp [] >> `?v4'. eval_exp s1' (translate_const c) v4' ∧ v_rel (eval_const s1.globals c) v4'` by metis_tac [translate_constant_correct] >> `?idx_size. v4' = FlatV (IntV (&x) idx_size)` by ( pop_assum mp_tac >> simp [Once v_rel_cases] >> rw [] >> fs [signed_v_to_num_def, signed_v_to_int_def] >> intLib.COOPER_TAC) >> first_x_assum drule >> disch_then drule >> disch_then drule >> disch_then (qspecl_then [`el x vs2`, `v2'`, `e2'`, `Select e1' (translate_const c)`] mp_tac) >> simp [Once eval_exp_cases] >> metis_tac [EVERY2_LUPDATE_same, LIST_REL_LENGTH, LIST_REL_EL_EQN] QED Theorem prog_ok_nonterm: ∀prog i ip. prog_ok prog ∧ get_instr prog ip (Inl i) ∧ ¬terminator i ⇒ inc_pc ip ∈ next_ips prog ip Proof rw [next_ips_cases, IN_DEF, get_instr_cases, PULL_EXISTS] >> `terminator (last b.body) ∧ b.body ≠ []` by metis_tac [prog_ok_def] >> Cases_on `length b.body = idx + 1` >- ( drule LAST_EL >> rw [] >> fs [DECIDE ``PRE (x + 1) = x``]) >> Cases_on `el idx b.body` >> fs [instr_next_ips_def, terminator_def] >> rw [EXISTS_OR_THM, inc_pc_def, inc_bip_def] QED Theorem translate_instr_to_exp_correct: ∀emap instr r t s1 s1' s2 prog l. is_ssa prog ∧ prog_ok prog ∧ classify_instr instr = Exp r t ∧ mem_state_rel prog emap s1 s1' ∧ get_instr prog s1.ip (Inl instr) ∧ step_instr prog s1 instr l s2 ⇒ ∃pv emap' s2'. l = Tau ∧ s2.ip = inc_pc s1.ip ∧ mem_state_rel prog emap' s2 s2' ∧ (r ∉ regs_to_keep ⇒ s1' = s2' ∧ emap' = emap |+ (r, translate_instr_to_exp emap instr)) ∧ (r ∈ regs_to_keep ⇒ emap' = emap |+ (r,Var (translate_reg r t)) ∧ step_inst s1' (Move [(translate_reg r t, translate_instr_to_exp emap instr)]) Tau s2') Proof recInduct translate_instr_to_exp_ind >> simp [translate_instr_to_exp_def, classify_instr_def] >> conj_tac >- ( (* Sub *) rw [step_instr_cases, get_instr_cases, update_result_def] >> qpat_x_assum `Sub _ _ _ _ _ _ = el _ _` (assume_tac o GSYM) >> `bigunion (image arg_to_regs {a1; a2}) ⊆ live prog s1.ip` by ( simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases, instr_uses_def] >> metis_tac []) >> fs [] >> first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >> disch_then drule >> disch_then drule >> first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >> disch_then drule >> disch_then drule >> rw [] >> drule translate_sub_correct >> disch_then drule >> disch_then (qspecl_then [`v'`, `v''`] mp_tac) >> simp [] >> disch_then drule >> disch_then drule >> rw [] >> rename1 `eval_exp _ (Sub _ _ _) res_v` >> rename1 `r ∈ _` >> Cases_on `r ∈ regs_to_keep` >> rw [] >- ( simp [step_inst_cases, PULL_EXISTS] >> qexists_tac `res_v` >> rw [] >- simp [inc_pc_def, llvmTheory.inc_pc_def] >- ( rw [update_results_def, GSYM FUPDATE_EQ_FUPDATE_LIST] >> simp [llvmTheory.inc_pc_def] >> irule mem_state_rel_update_keep >> rw [] >- rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >- ( drule prog_ok_nonterm >> simp [get_instr_cases, PULL_EXISTS] >> ntac 3 (disch_then drule) >> simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >- fs [mem_state_rel_def])) >- rw [inc_pc_def, llvmTheory.inc_pc_def] >- ( simp [llvmTheory.inc_pc_def] >> irule mem_state_rel_update >> rw [] >- ( fs [exp_uses_def] >| [Cases_on `a1`, Cases_on `a2`] >> fs [translate_arg_def] >> rename1 `flookup _ r_tmp` >> qexists_tac `r_tmp` >> rw [] >> simp [Once live_gen_kill] >> disj2_tac >> simp [uses_cases, IN_DEF, get_instr_cases, instr_uses_def, arg_to_regs_def]) >- rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, instr_assigns_def] >- ( drule prog_ok_nonterm >> simp [get_instr_cases, PULL_EXISTS] >> ntac 3 (disch_then drule) >> simp [terminator_def, next_ips_cases, IN_DEF, inc_pc_def]) >> metis_tac [])) >> conj_tac >- ( (* Extractvalue *) rw [step_instr_cases] >> simp [llvmTheory.inc_pc_def, update_result_def, FLOOKUP_UPDATE] >> drule translate_extract_correct >> rpt (disch_then drule) >> drule translate_arg_correct >> disch_then drule >> `arg_to_regs a ⊆ live prog s1.ip` by ( fs [get_instr_cases] >> qpat_x_assum `Extractvalue _ _ _ = el _ _` (mp_tac o GSYM) >> simp [Once live_gen_kill, SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases, instr_uses_def]) >> simp [] >> strip_tac >> disch_then drule >> simp [] >> rw [] >> rename1 `eval_exp _ (foldl _ _ _) res_v` >> rw [inc_bip_def, inc_pc_def] >> rename1 `r ∈ _` >> Cases_on `r ∈ regs_to_keep` >> rw [] >- ( simp [step_inst_cases, PULL_EXISTS] >> qexists_tac `res_v` >> rw [] >> rw [update_results_def] >> (* TODO: unfinished *) cheat) >- cheat) >> conj_tac >- ( (* Updatevalue *) rw [step_instr_cases] >> simp [llvmTheory.inc_pc_def, update_result_def, FLOOKUP_UPDATE] >> drule translate_update_correct >> rpt (disch_then drule) >> first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >> disch_then drule >> first_x_assum (mp_then.mp_then mp_then.Any mp_tac translate_arg_correct) >> disch_then drule >> `arg_to_regs a1 ⊆ live prog s1.ip ∧ arg_to_regs a2 ⊆ live prog s1.ip` by ( fs [get_instr_cases] >> qpat_x_assum `Insertvalue _ _ _ _ = el _ _` (mp_tac o GSYM) >> ONCE_REWRITE_TAC [live_gen_kill] >> simp [SUBSET_DEF, uses_cases, IN_DEF, get_instr_cases, instr_uses_def]) >> simp [] >> strip_tac >> strip_tac >> disch_then (qspecl_then [`v'`, `v''`] mp_tac) >> simp [] >> disch_then drule >> disch_then drule >> rw [] >> rename1 `eval_exp _ (translate_updatevalue _ _ _) res_v` >> rw [inc_pc_def, inc_bip_def] >> rename1 `r ∈ _` >> Cases_on `r ∈ regs_to_keep` >> rw [] >- ( simp [step_inst_cases, PULL_EXISTS] >> qexists_tac `res_v` >> rw [] >> rw [update_results_def] >> (* TODO: unfinished *) cheat) >- cheat) >> cheat QED Triviality eval_exp_help: (s1 with heap := h).locals = s1.locals Proof rw [] QED Theorem erase_tags_set_bytes: ∀p v l h. erase_tags (set_bytes p v l h) = set_bytes () v l (erase_tags h) Proof Induct_on `v` >> rw [set_bytes_def] >> irule (METIS_PROVE [] ``x = y ⇒ f a b c x = f a b c y``) >> rw [erase_tags_def] QED (* Theorem translate_instr_to_inst_correct: ∀prog emap instr s1 s1' s2. classify_instr instr = Non_exp ∧ state_rel prog emap s1 s1' ∧ get_instr prog s1.ip instr ∧ step_instr prog s1 instr s2 ⇒ ∃s2'. step_inst s1' (translate_instr_to_inst emap instr) s2' ∧ state_rel prog emap s2 s2' Proof rw [step_instr_cases] >> fs [classify_instr_def, translate_instr_to_inst_def] >- ( (* Load *) cheat) >- ( (* Store *) simp [step_inst_cases, PULL_EXISTS] >> drule get_instr_live >> rw [uses_def] >> drule translate_arg_correct >> disch_then drule >> disch_then drule >> qpat_x_assum `eval _ _ = Some _` mp_tac >> drule translate_arg_correct >> disch_then drule >> disch_then drule >> rw [] >> qpat_x_assum `v_rel (FlatV _) _` mp_tac >> simp [Once v_rel_cases] >> rw [] >> HINT_EXISTS_TAC >> rw [] >> qexists_tac `freeable` >> rw [] >> HINT_EXISTS_TAC >> rw [] >- metis_tac [v_rel_bytes] >- ( fs [w2n_i2n, pointer_size_def] >> metis_tac [v_rel_bytes, is_allocated_state_rel, ADD_COMM]) >> fs [state_rel_def] >> rw [] >- cheat >- ( fs [llvmTheory.inc_pc_def] >> `r ∈ live prog s1.ip` by ( drule live_gen_kill >> rw [next_ips_def, assigns_def, uses_def, inc_pc_def]) >> first_x_assum drule >> rw [] >> metis_tac [eval_exp_ignores, eval_exp_help]) >- ( rw [llvmTheory.inc_pc_def, w2n_i2n, pointer_size_def, erase_tags_set_bytes] >> metis_tac[v_rel_bytes])) >- cheat >- cheat >- cheat QED simp [step_inst_cases, PULL_EXISTS] >> Cases_on `r` >> simp [translate_reg_def] >> drule get_instr_live >> rw [uses_def] >> drule translate_arg_correct >> disch_then drule >> disch_then drule >> simp [Once v_rel_cases] >> rw [] >> qexists_tac `IntV (w2i w) pointer_size` >> rw [] >> qexists_tac `freeable` >> rw [] >- (fs [w2n_i2n, pointer_size_def] >> metis_tac [is_allocated_state_rel]) >> fs [state_rel_def] >> rw [] >- cheat >- ( fs [llvmTheory.inc_pc_def, update_results_def, update_result_def] >> rw [] >> fs [FLOOKUP_UPDATE] >> rw [] >- ( cheat) >- ( `r ∈ live prog s1.ip` by ( drule live_gen_kill >> rw [next_ips_def, assigns_def, uses_def, inc_pc_def]) >> first_x_assum drule >> rw [] >> qexists_tac `v` >> qexists_tac `v'` >> qexists_tac `e` >> rw [] metis_tac [eval_exp_ignores, eval_exp_help]) >- fs [update_results_def, llvmTheory.inc_pc_def, update_result_def] *) Definition translate_trace_def: (translate_trace types Tau = Tau) ∧ (translate_trace types Error = Error) ∧ (translate_trace types (Exit i) = (Exit i)) ∧ (translate_trace types (W gv bytes) = W (translate_glob_var gv (types gv)) bytes) End Definition untranslate_glob_var_def: untranslate_glob_var (Var_name n ty) = Glob_var n End Definition untranslate_trace_def: (untranslate_trace Tau = Tau) ∧ (untranslate_trace Error = Error) ∧ (untranslate_trace (Exit i) = (Exit i)) ∧ (untranslate_trace (W gv bytes) = W (untranslate_glob_var gv) bytes) End Theorem un_translate_glob_inv: ∀x t. untranslate_glob_var (translate_glob_var x t) = x Proof Cases_on `x` >> rw [untranslate_glob_var_def, translate_glob_var_def] QED Theorem un_translate_trace_inv: ∀x. untranslate_trace (translate_trace types x) = x Proof Cases >> rw [translate_trace_def, untranslate_trace_def] >> metis_tac [un_translate_glob_inv] QED Theorem take_to_call_lem: ∀i idx body. idx < length body ∧ el idx body = i ∧ ¬terminator i ∧ ¬is_call i ⇒ take_to_call (drop idx body) = i :: take_to_call (drop (idx + 1) body) Proof Induct_on `idx` >> rw [] >- (Cases_on `body` >> fs [take_to_call_def] >> rw []) >> Cases_on `body` >> fs [] >> first_x_assum drule >> simp [ADD1] QED Theorem translate_instrs_correct1: ∀prog s1 tr s2. multi_step prog s1 tr s2 ⇒ ∀s1' b' emap regs_to_keep d b types idx. prog_ok prog ∧ is_ssa prog ∧ mem_state_rel prog emap s1 s1' ∧ alookup prog s1.ip.f = Some d ∧ alookup d.blocks s1.ip.b = Some b ∧ s1.ip.i = Offset idx ∧ b' = fst (translate_instrs (dest_fn s1.ip.f) emap regs_to_keep (take_to_call (drop idx b.body))) ⇒ ∃emap s2' tr'. step_block (translate_prog prog) s1' b'.cmnd b'.term tr' s2' ∧ filter ($≠ Tau) tr' = filter ($≠ Tau) (map (translate_trace types) tr) ∧ state_rel prog emap s2 s2' Proof ho_match_mp_tac multi_step_ind >> rw_tac std_ss [] >- ( fs [last_step_cases] >- ( (* Phi (not handled here) *) fs [get_instr_cases]) >- ( (* Terminator *) `(∃code. l = Exit code) ∨ l = Tau ` by ( fs [llvmTheory.step_cases] >> `i' = i''` by metis_tac [get_instr_func, sumTheory.INL_11] >> fs [step_instr_cases] >> rfs [terminator_def]) >> fs [get_instr_cases, translate_trace_def] >> rw [] >> `el idx b.body = el 0 (drop idx b.body)` by rw [EL_DROP] >> fs [] >> Cases_on `drop idx b.body` >> fs [DROP_NIL] >> rw [] >- ( (* Exit *) fs [llvmTheory.step_cases, get_instr_cases, step_instr_cases, translate_instrs_def, take_to_call_def, classify_instr_def, translate_instr_to_term_def, translate_instr_to_inst_def, llvmTheory.get_obs_cases] >> simp [Once step_block_cases, step_term_cases, PULL_EXISTS, step_inst_cases] >> drule translate_arg_correct >> disch_then drule >> impl_tac >- ( `get_instr prog s1.ip (Inl (Exit a))` by rw [get_instr_cases] >> drule get_instr_live >> simp [uses_cases, SUBSET_DEF, IN_DEF, PULL_EXISTS] >> rw [] >> first_x_assum irule >> disj1_tac >> metis_tac [instr_uses_def]) >> rw [] >> qexists_tac `emap` >> qexists_tac `s1' with status := Complete code` >> qexists_tac `[Exit code]` >> rw [] >- (fs [v_rel_cases] >> fs [signed_v_to_int_def] >> metis_tac []) >> rw [state_rel_def] >> metis_tac [mem_state_rel_exited]) >> simp [take_to_call_def, translate_instrs_def] >> Cases_on `el idx b.body` >> fs [terminator_def, classify_instr_def, translate_trace_def] >> rw [] >- ( (* Ret *) cheat) >- ( (* Br *) simp [translate_instr_to_term_def, Once step_block_cases] >> simp [step_term_cases, PULL_EXISTS, RIGHT_AND_OVER_OR, EXISTS_OR_THM] >> fs [llvmTheory.step_cases] >> drule get_instr_live >> disch_tac >> drule translate_arg_correct >> fs [step_instr_cases] >> fs [] >> TRY (fs [get_instr_cases] >> NO_TAC) >> `a = a'` by fs [get_instr_cases] >> disch_then drule >> impl_tac >- ( fs [SUBSET_DEF, IN_DEF] >> rfs [uses_cases, get_instr_cases, instr_uses_def] >> fs [IN_DEF]) >> disch_tac >> fs [] >> fs [v_rel_cases, GSYM PULL_EXISTS] >> qexists_tac `emap` >> qexists_tac `w2i tf` >> simp [] >> conj_tac >- metis_tac [] >> Cases_on `s1'.bp` >> fs [dest_llair_lab_def] >> rename1 `el _ _ = Br e lab1 lab2` >> qexists_tac `dest_fn s1.ip.f` >> qexists_tac `if 0 = w2i tf then dest_label lab2 else dest_label lab1` >> simp [] >> qpat_abbrev_tac `target = if tf = 0w then l2 else l1` >> qpat_abbrev_tac `target' = if 0 = w2i tf then dest_label lab2 else dest_label lab1` >> rw [] >> `translate_label (dest_fn s1.ip.f) target = Lab_name (dest_fn s1.ip.f) target' ` by ( fs [get_instr_cases] >> rw [] >> unabbrev_all_tac >> rw [] >> fs [word_0_w2i] >> Cases_on `l2` >> Cases_on `l1` >> rw [translate_label_def, dest_label_def] >> `0 = w2i (0w:word1)` by rw [word_0_w2i] >> fs [w2i_11]) >> rw [state_rel_def] >- (Cases_on `lab2` >> rw [Abbr `target'`, translate_label_def, dest_label_def]) >- (Cases_on `lab1` >> rw [Abbr `target'`, translate_label_def, dest_label_def]) >- ( rw [pc_rel_cases] >> cheat) >- ( fs [mem_state_rel_def] >> rw [] >- ( qpat_x_assum `!r. r ∈ live _ _ ⇒ P r` mp_tac >> simp [Once live_gen_kill] >> disch_then (qspec_then `r` mp_tac) >> impl_tac >> rw [] >> rw [PULL_EXISTS] >> disj1_tac >> qexists_tac `<|f := s1.ip.f; b := Some target; i := Phi_ip s1.ip.b|>` >> rw [next_ips_cases, IN_DEF, assigns_cases] >- ( disj1_tac >> qexists_tac `Br a l1 l2` >> rw [instr_next_ips_def, Abbr `target`] >> fs [prog_ok_def, get_instr_cases] >> last_x_assum drule >> disch_then drule >> rw [] >> `last b.body = Br a l1 l2` by cheat >> fs [instr_to_labs_def] >> metis_tac [blockHeader_nchotomy]) >> CCONTR_TAC >> fs [] >> imp_res_tac get_instr_func >> fs [] >> rw [] >> fs [instr_assigns_def]) >- cheat)) >- ( (* Invoke *) cheat) >- ( (* Unreachable *) cheat) >- ( (* Exit *) fs [llvmTheory.step_cases, get_instr_cases, step_instr_cases]) >- ( (* Throw *) cheat)) >- ( (* Call *) cheat) >- ( (* Stuck *) rw [translate_trace_def] >> (* TODO: need to know that stuck LLVM instructions translate to stuck * llair instructions. This will follow from knowing that when a llair * instruction takes a step, the LLVM source can take the same step, ie, * the backward direction of the proof. *) cheat)) >- ( (* Middle of the block *) fs [llvmTheory.step_cases] >> TRY (fs [get_instr_cases] >> NO_TAC) >> `i' = i` by metis_tac [get_instr_func, sumTheory.INL_11] >> fs [] >> rename [`step_instr _ _ _ _ s2`, `state_rel _ _ s3 _`, `mem_state_rel _ _ s1 s1'`] >> Cases_on `∃r t. classify_instr i = Exp r t` >> fs [] >- ( (* instructions that compile to expressions *) drule translate_instr_to_exp_correct >> ntac 5 (disch_then drule) >> disch_then (qspec_then `regs_to_keep` mp_tac) >> rw [] >> fs [translate_trace_def] >> `reachable prog (inc_pc s1.ip)` by metis_tac [prog_ok_nonterm, next_ips_reachable, mem_state_rel_def] >> first_x_assum drule >> simp [inc_pc_def, inc_bip_def] >> disch_then (qspecl_then [`regs_to_keep`, `types`] mp_tac) >> rw [] >> rename1 `state_rel prog emap3 s3 s3'` >> qexists_tac `emap3` >> qexists_tac `s3'` >> rw [] >> `take_to_call (drop idx b.body) = i :: take_to_call (drop (idx + 1) b.body)` by ( irule take_to_call_lem >> simp [] >> fs [get_instr_cases]) >> simp [translate_instrs_def] >> Cases_on `r ∉ regs_to_keep` >> fs [] >> rw [] >- metis_tac [] >> qexists_tac `Tau::tr'` >> rw [] >> simp [Once step_block_cases] >> disj2_tac >> pairarg_tac >> rw [] >> fs [] >> metis_tac []) >- ( (* Non-expression instructions *) cheat)) QED Theorem multi_step_to_step_block: ∀prog s1 tr s2 s1'. prog_ok prog ∧ is_ssa prog ∧ multi_step prog s1 tr s2 ∧ s1.status = Partial ∧ state_rel prog emap s1 s1' ⇒ ∃s2' emap2 b tr'. get_block (translate_prog prog) s1'.bp b ∧ step_block (translate_prog prog) s1' b.cmnd b.term tr' s2' ∧ filter ($≠ Tau) tr' = filter ($≠ Tau) (map (translate_trace types) tr) ∧ state_rel prog emap2 s2 s2' Proof rw [] >> pop_assum mp_tac >> simp [Once state_rel_def] >> rw [pc_rel_cases] >- ( (* Non-phi instruction *) drule translate_instrs_correct1 >> simp [] >> disch_then drule >> disch_then (qspecl_then [`regs_to_keep`, `types`] mp_tac) >> simp [] >> rw [] >> qexists_tac `s2'` >> simp [] >> ntac 3 HINT_EXISTS_TAC >> rw [] >> fs [dest_fn_def]) >> (* Phi instruction *) reverse (fs [Once multi_step_cases]) >- metis_tac [get_instr_func, sumTheory.sum_distinct] >> qpat_x_assum `last_step _ _ _ _` mp_tac >> (* simp [last_step_def] >> simp [Once llvmTheory.step_cases] >> rw [] >> imp_res_tac get_instr_func >> fs [] >> rw [] >> fs [translate_trace_def] >> *) (* TODO: unfinished *) cheat QED Theorem step_block_to_multi_step: ∀prog s1 s1' tr s2' b. state_rel prog emap s1 s1' ∧ get_block (translate_prog prog) s1'.bp b ∧ step_block (translate_prog prog) s1' b.cmnd b.term tr s2' ⇒ ∃s2. multi_step prog s1 (map untranslate_trace tr) s2 ∧ state_rel prog emap s2 s2' Proof cheat QED Theorem trans_trace_not_tau: ∀types. ($≠ Tau) ∘ translate_trace types = ($≠ Tau) Proof rw [FUN_EQ_THM] >> eq_tac >> rw [translate_trace_def] >> TRY (Cases_on `y`) >> fs [translate_trace_def] QED Theorem untrans_trace_not_tau: ∀types. ($≠ Tau) ∘ untranslate_trace = ($≠ Tau) Proof rw [FUN_EQ_THM] >> eq_tac >> rw [untranslate_trace_def] >> TRY (Cases_on `y`) >> fs [untranslate_trace_def] QED Theorem translate_prog_correct_lem1: ∀path. okpath (multi_step prog) path ∧ finite path ⇒ ∀emap s1'. prog_ok prog ∧ is_ssa prog ∧ state_rel prog emap (first path) s1' ⇒ ∃path' emap. finite path' ∧ okpath (step (translate_prog prog)) path' ∧ first path' = s1' ∧ LMAP (filter ($≠ Tau)) (labels path') = LMAP (map (translate_trace types) o filter ($≠ Tau)) (labels path) ∧ state_rel prog emap (last path) (last path') Proof ho_match_mp_tac finite_okpath_ind >> rw [] >- (qexists_tac `stopped_at s1'` >> rw [] >> metis_tac []) >> fs [] >> rename1 `state_rel _ _ s1 s1'` >> Cases_on `s1.status ≠ Partial` >- fs [Once multi_step_cases, llvmTheory.step_cases, last_step_cases] >> fs [] >> drule multi_step_to_step_block >> ntac 4 (disch_then drule) >> disch_then (qspec_then `types` mp_tac) >> rw [] >> first_x_assum drule >> rw [] >> qexists_tac `pcons s1' tr' path'` >> rw [] >> rw [FILTER_MAP, combinTheory.o_DEF, trans_trace_not_tau] >> HINT_EXISTS_TAC >> simp [] >> simp [step_cases] >> qexists_tac `b` >> simp [] >> qpat_x_assum `state_rel _ _ _ s1'` mp_tac >> rw [state_rel_def, mem_state_rel_def] QED Theorem translate_prog_correct_lem2: ∀path'. okpath (step (translate_prog prog)) path' ∧ finite path' ⇒ ∀s1. prog_ok prog ∧ state_rel prog emap s1 (first path') ⇒ ∃path. finite path ∧ okpath (multi_step prog) path ∧ first path = s1 ∧ labels path = LMAP (map untranslate_trace) (labels path') ∧ state_rel prog emap (last path) (last path') Proof ho_match_mp_tac finite_okpath_ind >> rw [] >- (qexists_tac `stopped_at s1` >> rw []) >> fs [step_cases] >> drule step_block_to_multi_step >> ntac 2 (disch_then drule) >> rw [] >> first_x_assum drule >> rw [] >> qexists_tac `pcons s1 (map untranslate_trace r) path` >> rw [] QED Theorem translate_global_var_11: ∀path. okpath (step (translate_prog prog)) path ∧ finite path ⇒ ∀x t1 bytes t2 l. labels path = fromList l ∧ MEM (W (Var_name x t1) bytes) (flat l) ∧ MEM (W (Var_name x t2) bytes) (flat l) ⇒ t1 = t2 Proof cheat QED Theorem prefix_take_filter_lemma: ∀l lsub. lsub ≼ l ⇒ filter (λy. Tau ≠ y) lsub = take (length (filter (λy. Tau ≠ y) lsub)) (filter (λy. Tau ≠ y) l) Proof Induct_on `lsub` >> rw [] >> Cases_on `l` >> fs [] >> rw [] QED Theorem multi_step_lab_label: ∀prog s1 ls s2. multi_step prog s1 ls s2 ⇒ s2.status ≠ Partial ⇒ ∃ls'. (∃i. ls = ls' ++ [Exit i]) ∨ ls = ls' ++ [Error] Proof ho_match_mp_tac multi_step_ind >> rw [] >> fs [] >> fs [last_step_cases, llvmTheory.step_cases, step_instr_cases, update_result_def, llvmTheory.inc_pc_def] >> rw [] >> fs [] QED Theorem prefix_filter_len_eq: ∀l1 l2 x. l1 ≼ l2 ++ [x] ∧ length (filter P l1) = length (filter P (l2 ++ [x])) ∧ P x ⇒ l1 = l2 ++ [x] Proof Induct_on `l1` >> rw [FILTER_APPEND] >> Cases_on `l2` >> fs [] >> rw [] >> rfs [ADD1] >> first_x_assum irule >> rw [FILTER_APPEND] QED Theorem translate_prog_correct: ∀prog s1 s1'. prog_ok prog ∧ is_ssa prog ∧ state_rel prog emap s1 s1' ⇒ multi_step_sem prog s1 = image (I ## map untranslate_trace) (sem (translate_prog prog) s1') Proof rw [sem_def, multi_step_sem_def, EXTENSION] >> eq_tac >> rw [] >- ( drule translate_prog_correct_lem1 >> ntac 4 (disch_then drule) >> disch_then (qspec_then `types` mp_tac) >> rw [pairTheory.EXISTS_PROD] >> PairCases_on `x` >> rw [] >> qexists_tac `map (translate_trace types) x1` >> rw [] >- rw [MAP_MAP_o, combinTheory.o_DEF, un_translate_trace_inv] >> qexists_tac `path'` >> rw [] >> fs [IN_DEF, observation_prefixes_cases, toList_some] >> rw [] >> `?labs. labels path' = fromList labs` by ( fs [GSYM finite_labels] >> imp_res_tac llistTheory.LFINITE_toList >> fs [toList_some]) >> fs [] >> rfs [lmap_fromList, combinTheory.o_DEF, MAP_MAP_o] >> simp [FILTER_FLAT, MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, FILTER_MAP] >- fs [state_rel_def, mem_state_rel_def] >- fs [state_rel_def, mem_state_rel_def] >> rename [`labels path' = fromList l'`, `labels path = fromList l`, `state_rel _ _ (last path) (last path')`, `lsub ≼ flat l`] >> Cases_on `lsub = flat l` >> fs [] >- ( qexists_tac `flat l'` >> rw [FILTER_FLAT, MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF] >> fs [state_rel_def, mem_state_rel_def]) >> `filter (λy. Tau ≠ y) (flat l') = map (translate_trace types) (filter (λy. Tau ≠ y) (flat l))` by rw [FILTER_FLAT, MAP_FLAT, MAP_MAP_o, combinTheory.o_DEF, FILTER_MAP] >> qexists_tac `take_prop ($≠ Tau) (length (filter ($≠ Tau) lsub)) (flat l')` >> rw [] >> rw [GSYM MAP_TAKE] >- metis_tac [prefix_take_filter_lemma] >> CCONTR_TAC >> fs [] >> `(last path).status = (last path').status` by fs [state_rel_def, mem_state_rel_def] >> drule take_prop_eq >> strip_tac >> `length (filter (λy. Tau ≠ y) (flat l')) = length (filter (λy. Tau ≠ y) (flat l))` by rw [] >> fs [] >> drule filter_is_prefix >> disch_then (qspec_then `$≠ Tau` assume_tac) >> drule IS_PREFIX_LENGTH >> strip_tac >> fs [] >> `length (filter (λy. Tau ≠ y) lsub) = length (filter (λy. Tau ≠ y) (flat l))` by rw [] >> fs [] >> rw [] >> qspec_then `path` assume_tac finite_path_end_cases >> rfs [] >> fs [] >> rw [] >- (`l = []` by metis_tac [llistTheory.fromList_EQ_LNIL] >> fs [] >> rfs []) >> rfs [labels_plink] >> rename1 `LAPPEND (labels path) [|last_l'|] = _` >> `toList (LAPPEND (labels path) [|last_l'|]) = Some l` by metis_tac [llistTheory.from_toList] >> drule llistTheory.toList_LAPPEND_APPEND >> strip_tac >> fs [llistTheory.toList_THM] >> rw [] >> drule multi_step_lab_label >> strip_tac >> rfs [] >> fs [] >> drule prefix_filter_len_eq >> rw [] >> qexists_tac `$≠ Tau` >> rw []) >- ( fs [toList_some] >> drule translate_prog_correct_lem2 >> simp [] >> disch_then drule >> rw [] >> qexists_tac `path'` >> rw [] >> fs [IN_DEF, observation_prefixes_cases, toList_some] >> rw [] >> rfs [lmap_fromList] >> simp [GSYM MAP_FLAT, FILTER_MAP, untrans_trace_not_tau] >- fs [state_rel_def, mem_state_rel_def] >- fs [state_rel_def, mem_state_rel_def] >> qexists_tac `map untranslate_trace l2'` >> simp [GSYM MAP_FLAT, FILTER_MAP, untrans_trace_not_tau] >> `INJ untranslate_trace (set l2' ∪ set (flat l2)) UNIV` by ( drule is_prefix_subset >> rw [SUBSET_DEF] >> `set l2' ∪ set (flat l2) = set (flat l2)` by (rw [EXTENSION] >> metis_tac []) >> simp [] >> simp [INJ_DEF] >> rpt gen_tac >> Cases_on `x` >> Cases_on `y` >> simp [untranslate_trace_def] >> Cases_on `a` >> Cases_on `a'` >> simp [untranslate_glob_var_def] >> metis_tac [translate_global_var_11]) >> fs [INJ_MAP_EQ_IFF, inj_map_prefix_iff] >> rw [] >> fs [state_rel_def, mem_state_rel_def]) QED export_theory ();