(* * Copyright (c) 2009 - 2013 Monoidics ltd. * Copyright (c) 2013 - present Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) (** Functions for Propositions (i.e., Symbolic Heaps) *) module L = Logging module F = Format open Utils let decrease_indent_when_exception thunk = try (thunk ()) with exn when exn_not_failure exn -> (L.d_decrease_indent 1; raise exn) let compute_max_from_nonempty_int_list l = IList.hd (IList.rev (IList.sort Sil.Int.compare_value l)) let compute_min_from_nonempty_int_list l = IList.hd (IList.sort Sil.Int.compare_value l) let exp_pair_compare (e1, e2) (f1, f2) = let c1 = Sil.exp_compare e1 f1 in if c1 <> 0 then c1 else Sil.exp_compare e2 f2 let rec list_rev_acc acc = function | [] -> acc | x:: l -> list_rev_acc (x:: acc) l let rec remove_redundancy have_same_key acc = function | [] -> IList.rev acc | [x] -> IList.rev (x:: acc) | x:: ((y:: l') as l) -> if have_same_key x y then remove_redundancy have_same_key acc (x:: l') else remove_redundancy have_same_key (x:: acc) l (** {2 Ordinary Theorem Proving} *) let (++) = Sil.Int.add let (--) = Sil.Int.sub (** Reasoning about constraints of the form x-y <= n *) module DiffConstr : sig type t val to_leq : t -> Sil.exp * Sil.exp val to_lt : t -> Sil.exp * Sil.exp val to_triple : t -> Sil.exp * Sil.exp * Sil.Int.t val from_leq : t list -> Sil.exp * Sil.exp -> t list val from_lt : t list -> Sil.exp * Sil.exp -> t list val saturate : t list -> bool * t list end = struct type t = Sil.exp * Sil.exp * Sil.Int.t let compare (e1, e2, n) (f1, f2, m) = let c1 = exp_pair_compare (e1, e2) (f1, f2) in if c1 <> 0 then c1 else Sil.Int.compare_value n m let equal entry1 entry2 = compare entry1 entry2 = 0 let to_leq (e1, e2, n) = Sil.BinOp(Sil.MinusA, e1, e2), Sil.exp_int n let to_lt (e1, e2, n) = Sil.exp_int (Sil.Int.zero -- n -- Sil.Int.one), Sil.BinOp(Sil.MinusA, e2, e1) let to_triple entry = entry let from_leq acc (e1, e2) = match e1, e2 with | Sil.BinOp(Sil.MinusA, (Sil.Var id11 as e11), (Sil.Var id12 as e12)), Sil.Const (Sil.Cint n) when not (Ident.equal id11 id12) -> (match Sil.Int.to_signed n with | None -> acc (* ignore: constraint algorithm only terminates on signed integers *) | Some n' -> (e11, e12, n') :: acc) | _ -> acc let from_lt acc (e1, e2) = match e1, e2 with | Sil.Const (Sil.Cint n), Sil.BinOp(Sil.MinusA, (Sil.Var id21 as e21), (Sil.Var id22 as e22)) when not (Ident.equal id21 id22) -> (match Sil.Int.to_signed n with | None -> acc (* ignore: constraint algorithm only terminates on signed integers *) | Some n' -> let m = Sil.Int.zero -- n' -- Sil.Int.one in (e22, e21, m) :: acc) | _ -> acc let rec generate ((e1, e2, n) as constr) acc = function | [] -> false, acc | (f1, f2, m):: rest -> let equal_e2_f1 = Sil.exp_equal e2 f1 in let equal_e1_f2 = Sil.exp_equal e1 f2 in if equal_e2_f1 && equal_e1_f2 && Sil.Int.lt (n ++ m) Sil.Int.zero then true, [] (* constraints are inconsistent *) else if equal_e2_f1 && equal_e1_f2 then generate constr acc rest else if equal_e2_f1 then let constr_new = (e1, f2, n ++ m) in generate constr (constr_new:: acc) rest else if equal_e1_f2 then let constr_new = (f1, e2, m ++ n) in generate constr (constr_new:: acc) rest else generate constr acc rest let sort_then_remove_redundancy constraints = let constraints_sorted = IList.sort compare constraints in let have_same_key (e1, e2, _) (f1, f2, _) = exp_pair_compare (e1, e2) (f1, f2) = 0 in remove_redundancy have_same_key [] constraints_sorted let remove_redundancy constraints = let constraints' = sort_then_remove_redundancy constraints in IList.filter (fun entry -> IList.exists (equal entry) constraints') constraints let rec combine acc_todos acc_seen constraints_new constraints_old = match constraints_new, constraints_old with | [], [] -> IList.rev acc_todos, IList.rev acc_seen | [], _ -> IList.rev acc_todos, list_rev_acc constraints_old acc_seen | _, [] -> list_rev_acc constraints_new acc_todos, list_rev_acc constraints_new acc_seen | constr:: rest, constr':: rest' -> let e1, e2, n = constr in let f1, f2, m = constr' in let c1 = exp_pair_compare (e1, e2) (f1, f2) in if c1 = 0 && Sil.Int.lt n m then combine acc_todos acc_seen constraints_new rest' else if c1 = 0 then combine acc_todos acc_seen rest constraints_old else if c1 < 0 then combine (constr:: acc_todos) (constr:: acc_seen) rest constraints_old else combine acc_todos (constr':: acc_seen) constraints_new rest' let rec _saturate seen todos = (* seen is a superset of todos. "seen" is sorted and doesn't have redundancy. *) match todos with | [] -> false, seen | constr:: rest -> let inconsistent, constraints_new = generate constr [] seen in if inconsistent then true, [] else let constraints_new' = sort_then_remove_redundancy constraints_new in let todos_new, seen_new = combine [] [] constraints_new' seen in (* Important to use queue here. Otherwise, might diverge *) let rest_new = remove_redundancy (rest @ todos_new) in let seen_new' = sort_then_remove_redundancy seen_new in _saturate seen_new' rest_new let saturate constraints = let constraints_cleaned = sort_then_remove_redundancy constraints in _saturate constraints_cleaned constraints_cleaned end (** Return true if the two types have sizes which can be compared *) let type_size_comparable t1 t2 = match t1, t2 with | Sil.Tint _, Sil.Tint _ -> true | _ -> false (** Compare the size of comparable types *) let type_size_compare t1 t2 = let ik_compare ik1 ik2 = let ik_size = function | Sil.IChar | Sil.ISChar | Sil.IUChar | Sil.IBool -> 1 | Sil.IShort | Sil.IUShort -> 2 | Sil.IInt | Sil.IUInt -> 3 | Sil.ILong | Sil.IULong -> 4 | Sil.ILongLong | Sil.IULongLong -> 5 | Sil.I128 | Sil.IU128 -> 6 in let n1 = ik_size ik1 in let n2 = ik_size ik2 in n1 - n2 in match t1, t2 with | Sil.Tint ik1, Sil.Tint ik2 -> Some (ik_compare ik1 ik2) | _ -> None (** Check <= on the size of comparable types *) let check_type_size_leq t1 t2 = match type_size_compare t1 t2 with | None -> false | Some n -> n <= 0 (** Check < on the size of comparable types *) let check_type_size_lt t1 t2 = match type_size_compare t1 t2 with | None -> false | Some n -> n < 0 (** Reasoning about inequalities *) module Inequalities : sig (** type for inequalities (and implied disequalities) *) type t (** Extract inequalities and disequalities from [pi] *) val from_pi : Sil.atom list -> t (** Extract inequalities and disequalities from [sigma] *) val from_sigma : Sil.hpred list -> t (** Extract inequalities and disequalities from [prop] *) val from_prop : Prop.normal Prop.t -> t (** Join two sets of inequalities *) val join : t -> t -> t (** Pretty print inequalities and disequalities *) val pp : printenv -> Format.formatter -> t -> unit (** Check [t |- e1!=e2]. Result [false] means "don't know". *) val check_ne : t -> Sil.exp -> Sil.exp -> bool (** Check [t |- e1<=e2]. Result [false] means "don't know". *) val check_le : t -> Sil.exp -> Sil.exp -> bool (** Check [t |- e1 Sil.exp -> Sil.exp -> bool (** Find a Sil.Int.t n such that [t |- e<=n] if possible. *) val compute_upper_bound : t -> Sil.exp -> Sil.Int.t option (** Find a Sil.Int.t n such that [t |- n Sil.exp -> Sil.Int.t option (** Return [true] if a simple inconsistency is detected *) val inconsistent : t -> bool (** Pretty print <= *) val d_leqs : t -> unit (** Pretty print < *) val d_lts : t -> unit (** Pretty print <> *) val d_neqs : t -> unit end = struct type t = { mutable leqs: (Sil.exp * Sil.exp) list; (** le fasts [e1 <= e2] *) mutable lts: (Sil.exp * Sil.exp) list; (** lt facts [e1 < e2] *) mutable neqs: (Sil.exp * Sil.exp) list; (** ne facts [e1 != e2] *) } let inconsistent_ineq = { leqs = [(Sil.exp_one, Sil.exp_zero)]; lts = []; neqs = [] } let leq_compare (e1, e2) (f1, f2) = let c1 = Sil.exp_compare e1 f1 in if c1 <> 0 then c1 else Sil.exp_compare e2 f2 let lt_compare (e1, e2) (f1, f2) = let c2 = Sil.exp_compare e2 f2 in if c2 <> 0 then c2 else - (Sil.exp_compare e1 f1) let leqs_sort_then_remove_redundancy leqs = let leqs_sorted = IList.sort leq_compare leqs in let have_same_key leq1 leq2 = match leq1, leq2 with | (e1, Sil.Const (Sil.Cint n1)), (e2, Sil.Const (Sil.Cint n2)) -> Sil.exp_equal e1 e2 && Sil.Int.leq n1 n2 | _, _ -> false in remove_redundancy have_same_key [] leqs_sorted let lts_sort_then_remove_redundancy lts = let lts_sorted = IList.sort lt_compare lts in let have_same_key lt1 lt2 = match lt1, lt2 with | (Sil.Const (Sil.Cint n1), e1), (Sil.Const (Sil.Cint n2), e2) -> Sil.exp_equal e1 e2 && Sil.Int.geq n1 n2 | _, _ -> false in remove_redundancy have_same_key [] lts_sorted let saturate { leqs = leqs; lts = lts; neqs = neqs } = let diff_constraints1 = IList.fold_left DiffConstr.from_lt (IList.fold_left DiffConstr.from_leq [] leqs) lts in let inconsistent, diff_constraints2 = DiffConstr.saturate diff_constraints1 in if inconsistent then inconsistent_ineq else begin let umap_add umap e new_upper = try let old_upper = Sil.ExpMap.find e umap in if Sil.Int.leq old_upper new_upper then umap else Sil.ExpMap.add e new_upper umap with Not_found -> Sil.ExpMap.add e new_upper umap in let lmap_add lmap e new_lower = try let old_lower = Sil.ExpMap.find e lmap in if Sil.Int.geq old_lower new_lower then lmap else Sil.ExpMap.add e new_lower lmap with Not_found -> Sil.ExpMap.add e new_lower lmap in let rec umap_create_from_leqs umap = function | [] -> umap | (e1, Sil.Const (Sil.Cint upper1)):: leqs_rest -> let umap' = umap_add umap e1 upper1 in umap_create_from_leqs umap' leqs_rest | _:: leqs_rest -> umap_create_from_leqs umap leqs_rest in let rec lmap_create_from_lts lmap = function | [] -> lmap | (Sil.Const (Sil.Cint lower1), e1):: lts_rest -> let lmap' = lmap_add lmap e1 lower1 in lmap_create_from_lts lmap' lts_rest | _:: lts_rest -> lmap_create_from_lts lmap lts_rest in let rec umap_improve_by_difference_constraints umap = function | [] -> umap | constr:: constrs_rest -> try let e1, e2, n = DiffConstr.to_triple constr (* e1 - e2 <= n *) in let upper2 = Sil.ExpMap.find e2 umap in let new_upper1 = upper2 ++ n in let new_umap = umap_add umap e1 new_upper1 in umap_improve_by_difference_constraints new_umap constrs_rest with Not_found -> umap_improve_by_difference_constraints umap constrs_rest in let rec lmap_improve_by_difference_constraints lmap = function | [] -> lmap | constr:: constrs_rest -> (* e2 - e1 > -n-1 *) try let e1, e2, n = DiffConstr.to_triple constr (* e2 - e1 > -n-1 *) in let lower1 = Sil.ExpMap.find e1 lmap in let new_lower2 = lower1 -- n -- Sil.Int.one in let new_lmap = lmap_add lmap e2 new_lower2 in lmap_improve_by_difference_constraints new_lmap constrs_rest with Not_found -> lmap_improve_by_difference_constraints lmap constrs_rest in let leqs_res = let umap = umap_create_from_leqs Sil.ExpMap.empty leqs in let umap' = umap_improve_by_difference_constraints umap diff_constraints2 in let leqs' = Sil.ExpMap.fold (fun e upper acc_leqs -> (e, Sil.exp_int upper):: acc_leqs) umap' [] in let leqs'' = (IList.map DiffConstr.to_leq diff_constraints2) @ leqs' in leqs_sort_then_remove_redundancy leqs'' in let lts_res = let lmap = lmap_create_from_lts Sil.ExpMap.empty lts in let lmap' = lmap_improve_by_difference_constraints lmap diff_constraints2 in let lts' = Sil.ExpMap.fold (fun e lower acc_lts -> (Sil.exp_int lower, e):: acc_lts) lmap' [] in let lts'' = (IList.map DiffConstr.to_lt diff_constraints2) @ lts' in lts_sort_then_remove_redundancy lts'' in { leqs = leqs_res; lts = lts_res; neqs = neqs } end (** Extract inequalities and disequalities from [pi] *) let from_pi pi = let leqs = ref [] in (* <= facts *) let lts = ref [] in (* < facts *) let neqs = ref [] in (* != facts *) let process_atom = function | Sil.Aneq (e1, e2) -> (* != *) neqs := (e1, e2) :: !neqs | Sil.Aeq (Sil.BinOp (Sil.Le, e1, e2), Sil.Const (Sil.Cint i)) when Sil.Int.isone i -> (* <= *) leqs := (e1, e2) :: !leqs | Sil.Aeq (Sil.BinOp (Sil.Lt, e1, e2), Sil.Const (Sil.Cint i)) when Sil.Int.isone i -> (* < *) lts := (e1, e2) :: !lts | Sil.Aeq _ -> () in IList.iter process_atom pi; saturate { leqs = !leqs; lts = !lts; neqs = !neqs } let from_sigma sigma = let leqs = ref [] in let lts = ref [] in let add_lt_minus1_e e = lts := (Sil.exp_minus_one, e)::!lts in let texp_is_unsigned = function | Sil.Sizeof (Sil.Tint ik, _) -> Sil.ikind_is_unsigned ik | _ -> false in let strexp_lt_minus1 = function | Sil.Eexp (e, _) -> add_lt_minus1_e e | _ -> () in let rec strexp_extract = function | Sil.Eexp _ -> () | Sil.Estruct (fsel, _) -> IList.iter (fun (_, se) -> strexp_extract se) fsel | Sil.Earray (size, isel, _) -> add_lt_minus1_e size; IList.iter (fun (idx, se) -> add_lt_minus1_e idx; strexp_extract se) isel in let hpred_extract = function | Sil.Hpointsto(_, se, texp) -> if texp_is_unsigned texp then strexp_lt_minus1 se; strexp_extract se | Sil.Hlseg _ | Sil.Hdllseg _ -> () in IList.iter hpred_extract sigma; saturate { leqs = !leqs; lts = !lts; neqs = [] } let join ineq1 ineq2 = let leqs_new = ineq1.leqs @ ineq2.leqs in let lts_new = ineq1.lts @ ineq2.lts in let neqs_new = ineq1.neqs @ ineq2.neqs in saturate { leqs = leqs_new; lts = lts_new; neqs = neqs_new } let from_prop prop = let sigma = Prop.get_sigma prop in let pi = Prop.get_pi prop in let ineq_sigma = from_sigma sigma in let ineq_pi = from_pi pi in saturate (join ineq_sigma ineq_pi) (** Return true if the two pairs of expressions are equal *) let exp_pair_eq (e1, e2) (f1, f2) = Sil.exp_equal e1 f1 && Sil.exp_equal e2 f2 (** Check [t |- e1<=e2]. Result [false] means "don't know". *) let check_le { leqs = leqs; lts = lts; neqs = _ } e1 e2 = (* L.d_str "check_le "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *) match e1, e2 with | Sil.Const (Sil.Cint n1), Sil.Const (Sil.Cint n2) -> Sil.Int.leq n1 n2 | Sil.BinOp (Sil.MinusA, Sil.Sizeof (t1, _), Sil.Sizeof (t2, _)), Sil.Const(Sil.Cint n2) when Sil.Int.isminusone n2 && type_size_comparable t1 t2 -> (* [ sizeof(t1) - sizeof(t2) <= -1 ] *) check_type_size_lt t1 t2 | e, Sil.Const (Sil.Cint n) -> (* [e <= n' <= n |- e <= n] *) IList.exists (function | e', Sil.Const (Sil.Cint n') -> Sil.exp_equal e e' && Sil.Int.leq n' n | _, _ -> false) leqs | Sil.Const (Sil.Cint n), e -> (* [ n-1 <= n' < e |- n <= e] *) IList.exists (function | Sil.Const (Sil.Cint n'), e' -> Sil.exp_equal e e' && Sil.Int.leq (n -- Sil.Int.one) n' | _, _ -> false) lts | _ -> Sil.exp_equal e1 e2 (** Check [prop |- e1 Sil.Int.lt n1 n2 | Sil.Const (Sil.Cint n), e -> (* [n <= n' < e |- n < e] *) IList.exists (function | Sil.Const (Sil.Cint n'), e' -> Sil.exp_equal e e' && Sil.Int.leq n n' | _, _ -> false) lts | e, Sil.Const (Sil.Cint n) -> (* [e <= n' <= n-1 |- e < n] *) IList.exists (function | e', Sil.Const (Sil.Cint n') -> Sil.exp_equal e e' && Sil.Int.leq n' (n -- Sil.Int.one) | _, _ -> false) leqs | _ -> false (** Check [prop |- e1!=e2]. Result [false] means "don't know". *) let check_ne ineq _e1 _e2 = let e1, e2 = if Sil.exp_compare _e1 _e2 <= 0 then _e1, _e2 else _e2, _e1 in IList.exists (exp_pair_eq (e1, e2)) ineq.neqs || check_lt ineq e1 e2 || check_lt ineq e2 e1 (** Find a Sil.Int.t n such that [t |- e<=n] if possible. *) let compute_upper_bound { leqs = leqs; lts = _; neqs = _ } e1 = match e1 with | Sil.Const (Sil.Cint n1) -> Some n1 | _ -> let e_upper_list = IList.filter (function | e', Sil.Const (Sil.Cint _) -> Sil.exp_equal e1 e' | _, _ -> false) leqs in let upper_list = IList.map (function | _, Sil.Const (Sil.Cint n) -> n | _ -> assert false) e_upper_list in if upper_list == [] then None else Some (compute_min_from_nonempty_int_list upper_list) (** Find a Sil.Int.t n such that [t |- n < e] if possible. *) let compute_lower_bound { leqs = _; lts = lts; neqs = _ } e1 = match e1 with | Sil.Const (Sil.Cint n1) -> Some (n1 -- Sil.Int.one) | Sil.Sizeof _ -> Some Sil.Int.zero | _ -> let e_lower_list = IList.filter (function | Sil.Const (Sil.Cint _), e' -> Sil.exp_equal e1 e' | _, _ -> false) lts in let lower_list = IList.map (function | Sil.Const (Sil.Cint n), _ -> n | _ -> assert false) e_lower_list in if lower_list == [] then None else Some (compute_max_from_nonempty_int_list lower_list) (** Return [true] if a simple inconsistency is detected *) let inconsistent ({ leqs = leqs; lts = lts; neqs = neqs } as ineq) = let inconsistent_neq (e1, e2) = check_le ineq e1 e2 && check_le ineq e2 e1 in let inconsistent_leq (e1, e2) = check_lt ineq e2 e1 in let inconsistent_lt (e1, e2) = check_le ineq e2 e1 in IList.exists inconsistent_neq neqs || IList.exists inconsistent_leq leqs || IList.exists inconsistent_lt lts (** Pretty print inequalities and disequalities *) let pp pe fmt { leqs = leqs; lts = lts; neqs = neqs } = let pp_leq fmt (e1, e2) = F.fprintf fmt "%a<=%a" (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in let pp_lt fmt (e1, e2) = F.fprintf fmt "%a<%a" (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in let pp_neq fmt (e1, e2) = F.fprintf fmt "%a!=%a" (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in Format.fprintf fmt "%a %a %a" (pp_seq pp_leq) leqs (pp_seq pp_lt) lts (pp_seq pp_neq) neqs let d_leqs { leqs = leqs; lts = lts; neqs = neqs } = let elist = IList.map (fun (e1, e2) -> Sil.BinOp(Sil.Le, e1, e2)) leqs in Sil.d_exp_list elist let d_lts { leqs = leqs; lts = lts; neqs = neqs } = let elist = IList.map (fun (e1, e2) -> Sil.BinOp(Sil.Lt, e1, e2)) lts in Sil.d_exp_list elist let d_neqs { leqs = leqs; lts = lts; neqs = neqs } = let elist = IList.map (fun (e1, e2) -> Sil.BinOp(Sil.Ne, e1, e2)) lts in Sil.d_exp_list elist end (* End of module Inequalities *) (** Check [prop |- e1=e2]. Result [false] means "don't know". *) let check_equal prop e1 e2 = let n_e1 = Prop.exp_normalize_prop prop e1 in let n_e2 = Prop.exp_normalize_prop prop e2 in let check_equal () = Sil.exp_equal n_e1 n_e2 in let check_equal_const () = match n_e1, n_e2 with | Sil.BinOp (Sil.PlusA, e1, Sil.Const (Sil.Cint d)), e2 | e2, Sil.BinOp (Sil.PlusA, e1, Sil.Const (Sil.Cint d)) -> if Sil.exp_equal e1 e2 then Sil.Int.iszero d else false | Sil.Const c1, Sil.Lindex(Sil.Const c2, Sil.Const (Sil.Cint i)) when Sil.Int.iszero i -> Sil.const_equal c1 c2 | Sil.Lindex(Sil.Const c1, Sil.Const (Sil.Cint i)), Sil.Const c2 when Sil.Int.iszero i -> Sil.const_equal c1 c2 | _, _ -> false in let check_equal_pi () = let eq = Sil.Aeq(n_e1, n_e2) in let n_eq = Prop.atom_normalize_prop prop eq in let pi = Prop.get_pi prop in IList.exists (Sil.atom_equal n_eq) pi in check_equal () || check_equal_const () || check_equal_pi () (** Check [ |- e=0]. Result [false] means "don't know". *) let check_zero e = check_equal Prop.prop_emp e Sil.exp_zero (** [is_root prop base_exp exp] checks whether [base_exp = exp.offlist] for some list of offsets [offlist]. If so, it returns [Some(offlist)]. Otherwise, it returns [None]. Assumes that [base_exp] points to the beginning of a structure, not the middle. *) let is_root prop base_exp exp = let rec f offlist_past e = match e with | Sil.Var _ | Sil.Const _ | Sil.UnOp _ | Sil.BinOp _ | Sil.Lvar _ | Sil.Sizeof _ -> if check_equal prop base_exp e then Some offlist_past else None | Sil.Cast(t, sub_exp) -> f offlist_past sub_exp | Sil.Lfield(sub_exp, fldname, typ) -> f (Sil.Off_fld (fldname, typ) :: offlist_past) sub_exp | Sil.Lindex(sub_exp, e) -> f (Sil.Off_index e :: offlist_past) sub_exp in f [] exp (** Get upper and lower bounds of an expression, if any *) let get_bounds prop _e = let e_norm = Prop.exp_normalize_prop prop _e in let e_root, off = match e_norm with | Sil.BinOp (Sil.PlusA, e, Sil.Const (Sil.Cint n1)) -> e, Sil.Int.neg n1 | Sil.BinOp (Sil.MinusA, e, Sil.Const (Sil.Cint n1)) -> e, n1 | _ -> e_norm, Sil.Int.zero in let ineq = Inequalities.from_prop prop in let upper_opt = Inequalities.compute_upper_bound ineq e_root in let lower_opt = Inequalities.compute_lower_bound ineq e_root in let (+++) n_opt k = match n_opt with | None -> None | Some n -> Some (n ++ k) in upper_opt +++ off, lower_opt +++ off (** Check whether [prop |- e1!=e2]. *) let check_disequal prop e1 e2 = let spatial_part = Prop.get_sigma prop in let n_e1 = Prop.exp_normalize_prop prop e1 in let n_e2 = Prop.exp_normalize_prop prop e2 in let check_disequal_const () = match n_e1, n_e2 with | Sil.Const c1, Sil.Const c2 -> (Sil.const_kind_equal c1 c2) && not (Sil.const_equal c1 c2) | Sil.Const c1, Sil.Lindex(Sil.Const c2, Sil.Const (Sil.Cint d)) -> if Sil.Int.iszero d then not (Sil.const_equal c1 c2) (* offset=0 is no offset *) else Sil.const_equal c1 c2 (* same base, different offsets *) | Sil.BinOp (Sil.PlusA, e1, Sil.Const (Sil.Cint d1)), Sil.BinOp (Sil.PlusA, e2, Sil.Const (Sil.Cint d2)) -> if Sil.exp_equal e1 e2 then Sil.Int.neq d1 d2 else false | Sil.BinOp (Sil.PlusA, e1, Sil.Const (Sil.Cint d)), e2 | e2, Sil.BinOp (Sil.PlusA, e1, Sil.Const (Sil.Cint d)) -> if Sil.exp_equal e1 e2 then not (Sil.Int.iszero d) else false | Sil.Lindex(Sil.Const c1, Sil.Const (Sil.Cint d)), Sil.Const c2 -> if Sil.Int.iszero d then not (Sil.const_equal c1 c2) else Sil.const_equal c1 c2 | Sil.Lindex(Sil.Const c1, Sil.Const d1), Sil.Lindex (Sil.Const c2, Sil.Const d2) -> Sil.const_equal c1 c2 && not (Sil.const_equal d1 d2) | _, _ -> false in let ineq = lazy (Inequalities.from_prop prop) in let check_pi_implies_disequal e1 e2 = Inequalities.check_ne (Lazy.force ineq) e1 e2 in let neq_spatial_part () = let rec f sigma_irrelevant e = function | [] -> None | Sil.Hpointsto (base, _, _) as hpred :: sigma_rest -> (match is_root prop base e with | None -> let sigma_irrelevant' = hpred :: sigma_irrelevant in f sigma_irrelevant' e sigma_rest | Some _ -> let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (true, sigma_irrelevant')) | Sil.Hlseg (k, _, e1, e2, _) as hpred :: sigma_rest -> (match is_root prop e1 e with | None -> let sigma_irrelevant' = hpred :: sigma_irrelevant in f sigma_irrelevant' e sigma_rest | Some _ -> if (k == Sil.Lseg_NE || check_pi_implies_disequal e1 e2) then let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (true, sigma_irrelevant') else if (Sil.exp_equal e2 Sil.exp_zero) then let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (false, sigma_irrelevant') else let sigma_rest' = (IList.rev sigma_irrelevant) @ sigma_rest in f [] e2 sigma_rest') | Sil.Hdllseg (Sil.Lseg_NE, _, iF, oB, oF, iB, _) :: sigma_rest -> if is_root prop iF e != None || is_root prop iB e != None then let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (true, sigma_irrelevant') else let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (false, sigma_irrelevant') | Sil.Hdllseg (Sil.Lseg_PE, _, iF, oB, oF, iB, _) as hpred :: sigma_rest -> (match is_root prop iF e with | None -> let sigma_irrelevant' = hpred :: sigma_irrelevant in f sigma_irrelevant' e sigma_rest | Some _ -> if (check_pi_implies_disequal iF oF) then let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (true, sigma_irrelevant') else if (Sil.exp_equal oF Sil.exp_zero) then let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (false, sigma_irrelevant') else let sigma_rest' = (IList.rev sigma_irrelevant) @ sigma_rest in f [] oF sigma_rest') in let f_null_check sigma_irrelevant e sigma_rest = if not (Sil.exp_equal e Sil.exp_zero) then f sigma_irrelevant e sigma_rest else let sigma_irrelevant' = (IList.rev sigma_irrelevant) @ sigma_rest in Some (false, sigma_irrelevant') in match f_null_check [] n_e1 spatial_part with | None -> false | Some (e1_allocated, spatial_part_leftover) -> (match f_null_check [] n_e2 spatial_part_leftover with | None -> false | Some ((e2_allocated : bool), _) -> e1_allocated || e2_allocated) in let neq_pure_part () = check_pi_implies_disequal n_e1 n_e2 in check_disequal_const () || neq_pure_part () || neq_spatial_part () (** Check [prop |- e1<=e2], to be called from normalized atom *) let check_le_normalized prop e1 e2 = (* L.d_str "check_le_normalized "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *) let eL, eR, off = match e1, e2 with | Sil.BinOp(Sil.MinusA, f1, f2), Sil.Const (Sil.Cint n) -> if Sil.exp_equal f1 f2 then Sil.exp_zero, Sil.exp_zero, n else f1, f2, n | _ -> e1, e2, Sil.Int.zero in let ineq = Inequalities.from_prop prop in let upper_lower_check () = let upperL_opt = Inequalities.compute_upper_bound ineq eL in let lowerR_opt = Inequalities.compute_lower_bound ineq eR in match upperL_opt, lowerR_opt with | None, _ | _, None -> false | Some upper1, Some lower2 -> Sil.Int.leq upper1 (lower2 ++ Sil.Int.one ++ off) in (upper_lower_check ()) || (Inequalities.check_le ineq e1 e2) || (check_equal prop e1 e2) (** Check [prop |- e1 false | Some upper1, Some lower2 -> Sil.Int.leq upper1 lower2 in (upper_lower_check ()) || (Inequalities.check_lt ineq e1 e2) (* given an atom and a proposition returns a unique identifier. *) (* We use this to distinguish among different queries *) let get_smt_key a p = let tmp_filename = Filename.temp_file "smt_query" ".cns" in let outc_tmp = open_out tmp_filename in let fmt_tmp = F.formatter_of_out_channel outc_tmp in let pe = Utils.pe_text in let () = F.fprintf fmt_tmp "%a%a" (Sil.pp_atom pe) a (Prop.pp_prop pe) p in close_out outc_tmp; Digest.to_hex (Digest.file tmp_filename) (** Check whether [prop |- a]. False means dont know. *) let check_atom prop a0 = let a = Prop.atom_normalize_prop prop a0 in let prop_no_fp = Prop.replace_sigma_footprint [] (Prop.replace_pi_footprint [] prop) in if !Config.smt_output then begin let pe = Utils.pe_text in let key = get_smt_key a prop_no_fp in let key_filename = DB.Results_dir.path_to_filename DB.Results_dir.Abs_source_dir [(key ^ ".cns")] in let outc = open_out (DB.filename_to_string key_filename) in let fmt = F.formatter_of_out_channel outc in L.d_str ("ID: "^key); L.d_ln (); L.d_str "CHECK_ATOM_BOUND: "; Sil.d_atom a; L.d_ln (); L.d_str "WHERE:"; L.d_ln(); Prop.d_prop prop_no_fp; L.d_ln (); L.d_ln (); let () = F.fprintf fmt "ID: %s @\nCHECK_ATOM_BOUND: %a@\nWHERE:@\n%a" key (Sil.pp_atom pe) a (Prop.pp_prop pe) prop_no_fp in close_out outc; end; match a with | Sil.Aeq (Sil.BinOp (Sil.Le, e1, e2), Sil.Const (Sil.Cint i)) when Sil.Int.isone i -> check_le_normalized prop e1 e2 | Sil.Aeq (Sil.BinOp (Sil.Lt, e1, e2), Sil.Const (Sil.Cint i)) when Sil.Int.isone i -> check_lt_normalized prop e1 e2 | Sil.Aeq (e1, e2) -> check_equal prop e1 e2 | Sil.Aneq (e1, e2) -> check_disequal prop e1 e2 (** Check [prop |- e1<=e2]. Result [false] means "don't know". *) let check_le prop e1 e2 = let e1_le_e2 = Sil.BinOp (Sil.Le, e1, e2) in check_atom prop (Prop.mk_inequality e1_le_e2) (** Check [prop |- e1 is_root prop base n_e != None | Sil.Hlseg (k, _, e1, e2, _) -> if k == Sil.Lseg_NE || check_disequal prop e1 e2 then is_root prop e1 n_e != None else false | Sil.Hdllseg (k, _, iF, oB, oF, iB, _) -> if k == Sil.Lseg_NE || check_disequal prop iF oF || check_disequal prop iB oB then is_root prop iF n_e != None || is_root prop iB n_e != None else false in IList.exists f spatial_part (** Compute an upper bound of an expression *) let compute_upper_bound_of_exp p e = let ineq = Inequalities.from_prop p in Inequalities.compute_upper_bound ineq e let pair_compare compare1 compare2 (x1, x2) (y1, y2) = let n1 = compare1 x1 y1 in if n1 <> 0 then n1 else compare2 x2 y2 (** Check if two hpreds have the same allocated lhs *) let check_inconsistency_two_hpreds prop = let sigma = Prop.get_sigma prop in let rec f e sigma_seen = function | [] -> false | (Sil.Hpointsto (e1, _, _) as hpred) :: sigma_rest | (Sil.Hlseg (Sil.Lseg_NE, _, e1, _, _) as hpred) :: sigma_rest -> if Sil.exp_equal e1 e then true else f e (hpred:: sigma_seen) sigma_rest | (Sil.Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _) as hpred) :: sigma_rest -> if Sil.exp_equal iF e || Sil.exp_equal iB e then true else f e (hpred:: sigma_seen) sigma_rest | Sil.Hlseg (Sil.Lseg_PE, _, e1, Sil.Const (Sil.Cint i), _) as hpred :: sigma_rest when Sil.Int.iszero i -> if Sil.exp_equal e1 e then true else f e (hpred:: sigma_seen) sigma_rest | Sil.Hlseg (Sil.Lseg_PE, _, e1, e2, _) as hpred :: sigma_rest -> if Sil.exp_equal e1 e then let prop' = Prop.normalize (Prop.from_sigma (sigma_seen@sigma_rest)) in let prop_new = Prop.conjoin_eq e1 e2 prop' in let sigma_new = Prop.get_sigma prop_new in let e_new = Prop.exp_normalize_prop prop_new e in f e_new [] sigma_new else f e (hpred:: sigma_seen) sigma_rest | Sil.Hdllseg (Sil.Lseg_PE, _, e1, e2, Sil.Const (Sil.Cint i), _, _) as hpred :: sigma_rest when Sil.Int.iszero i -> if Sil.exp_equal e1 e then true else f e (hpred:: sigma_seen) sigma_rest | Sil.Hdllseg (Sil.Lseg_PE, _, e1, e2, e3, e4, _) as hpred :: sigma_rest -> if Sil.exp_equal e1 e then let prop' = Prop.normalize (Prop.from_sigma (sigma_seen@sigma_rest)) in let prop_new = Prop.conjoin_eq e1 e3 prop' in let sigma_new = Prop.get_sigma prop_new in let e_new = Prop.exp_normalize_prop prop_new e in f e_new [] sigma_new else f e (hpred:: sigma_seen) sigma_rest in let rec check sigma_seen = function | [] -> false | (Sil.Hpointsto (e1, _, _) as hpred) :: sigma_rest | (Sil.Hlseg (Sil.Lseg_NE, _, e1, _, _) as hpred) :: sigma_rest -> if (f e1 [] (sigma_seen@sigma_rest)) then true else check (hpred:: sigma_seen) sigma_rest | Sil.Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _) as hpred :: sigma_rest -> if f iF [] (sigma_seen@sigma_rest) || f iB [] (sigma_seen@sigma_rest) then true else check (hpred:: sigma_seen) sigma_rest | (Sil.Hlseg (Sil.Lseg_PE, _, _, _, _) as hpred) :: sigma_rest | (Sil.Hdllseg (Sil.Lseg_PE, _, _, _, _, _, _) as hpred) :: sigma_rest -> check (hpred:: sigma_seen) sigma_rest in check [] sigma (** Inconsistency checking ignoring footprint. *) let check_inconsistency_base prop = let pi = Prop.get_pi prop in let sigma = Prop.get_sigma prop in let inconsistent_ptsto _ = check_allocatedness prop Sil.exp_zero in let inconsistent_this_self_var () = let procdesc = Cfg.Node.get_proc_desc (State.get_node ()) in let procedure_attr = Cfg.Procdesc.get_attributes procdesc in let is_java_this pvar = !Config.curr_language = Config.Java && Sil.pvar_is_this pvar in let is_objc_instance_self pvar = !Config.curr_language = Config.C_CPP && Sil.pvar_get_name pvar = Mangled.from_string "self" && procedure_attr.ProcAttributes.is_objc_instance_method in let is_cpp_this pvar = !Config.curr_language = Config.C_CPP && Sil.pvar_is_this pvar && procedure_attr.ProcAttributes.is_cpp_instance_method in let do_hpred = function | Sil.Hpointsto (Sil.Lvar pv, Sil.Eexp (e, _), _) -> Sil.exp_equal e Sil.exp_zero && Sil.pvar_is_seed pv && (is_java_this pv || is_cpp_this pv || is_objc_instance_self pv) | _ -> false in IList.exists do_hpred sigma in let inconsistent_atom = function | Sil.Aeq (e1, e2) -> (match e1, e2 with | Sil.Const c1, Sil.Const c2 -> not (Sil.const_equal c1 c2) | _ -> check_disequal prop e1 e2) | Sil.Aneq (e1, e2) -> (match e1, e2 with | Sil.Const c1, Sil.Const c2 -> Sil.const_equal c1 c2 | _ -> (Sil.exp_compare e1 e2 = 0)) in let inconsistent_inequalities () = let ineq = Inequalities.from_prop prop in (* L.d_strln "Inequalities:"; L.d_strln "Prop: "; Prop.d_prop prop; L.d_ln (); L.d_str "leqs: "; Inequalities.d_leqs ineq; L.d_ln (); L.d_str "lts: "; Inequalities.d_lts ineq; L.d_ln (); L.d_str "neqs: "; Inequalities.d_neqs ineq; L.d_ln (); *) Inequalities.inconsistent ineq in inconsistent_ptsto () || check_inconsistency_two_hpreds prop || IList.exists inconsistent_atom pi || inconsistent_inequalities () || inconsistent_this_self_var () (** Inconsistency checking. *) let check_inconsistency prop = (check_inconsistency_base prop) || (check_inconsistency_base (Prop.normalize (Prop.extract_footprint prop))) (** Inconsistency checking for the pi part ignoring footprint. *) let check_inconsistency_pi pi = check_inconsistency_base (Prop.normalize (Prop.from_pi pi)) (** {2 Abduction prover} *) type subst2 = Sil.subst * Sil.subst type exc_body = | EXC_FALSE | EXC_FALSE_HPRED of Sil.hpred | EXC_FALSE_EXPS of Sil.exp * Sil.exp | EXC_FALSE_SEXPS of Sil.strexp * Sil.strexp | EXC_FALSE_ATOM of Sil.atom | EXC_FALSE_SIGMA of Sil.hpred list exception IMPL_EXC of string * subst2 * exc_body exception MISSING_EXC of string type check = | Bounds_check | Class_cast_check of Sil.exp * Sil.exp * Sil.exp let d_typings typings = let d_elem (exp, texp) = Sil.d_exp exp; L.d_str ": "; Sil.d_texp_full texp; L.d_str " " in IList.iter d_elem typings (** Module to encapsulate operations on the internal state of the prover *) module ProverState : sig val reset : Prop.normal Prop.t -> Prop.exposed Prop.t -> unit val checks : check list ref type bounds_check = (** type for array bounds checks *) | BCsize_imply of Sil.exp * Sil.exp * Sil.exp list (** coming from array_size_imply *) | BCfrom_pre of Sil.atom (** coming implicitly from preconditions *) val add_bounds_check : bounds_check -> unit val add_frame_fld : Sil.hpred -> unit val add_frame_typ : Sil.exp * Sil.exp -> unit val add_missing_fld : Sil.hpred -> unit val add_missing_pi : Sil.atom -> unit val add_missing_sigma : Sil.hpred list -> unit val add_missing_typ : Sil.exp * Sil.exp -> unit val atom_is_array_bounds_check : Sil.atom -> bool (** check if atom in pre is a bounds check *) val get_bounds_checks : unit -> bounds_check list val get_frame_fld : unit -> Sil.hpred list val get_frame_typ : unit -> (Sil.exp * Sil.exp) list val get_missing_fld : unit -> Sil.hpred list val get_missing_pi : unit -> Sil.atom list val get_missing_sigma : unit -> Sil.hpred list val get_missing_typ : unit -> (Sil.exp * Sil.exp) list val d_implication : Sil.subst * Sil.subst -> 'a Prop.t * 'b Prop.t -> unit val d_implication_error : string * (Sil.subst * Sil.subst) * exc_body -> unit end = struct type bounds_check = | BCsize_imply of Sil.exp * Sil.exp * Sil.exp list | BCfrom_pre of Sil.atom let implication_lhs = ref Prop.prop_emp let implication_rhs = ref (Prop.expose Prop.prop_emp) let fav_in_array_size = ref (Sil.fav_new ()) (* free variables in array size position *) let bounds_checks = ref [] (* delayed bounds check for arrays *) let frame_fld = ref [] let missing_fld = ref [] let missing_pi = ref [] let missing_sigma = ref [] let frame_typ = ref [] let missing_typ = ref [] let checks = ref [] (** free vars in array size position in current part of prop *) let prop_fav_size prop = let fav = Sil.fav_new () in let do_hpred = function | Sil.Hpointsto (_, Sil.Earray (Sil.Var _ as size, _, _), _) -> Sil.exp_fav_add fav size | _ -> () in IList.iter do_hpred (Prop.get_sigma prop); fav let reset lhs rhs = checks := []; implication_lhs := lhs; implication_rhs := rhs; fav_in_array_size := prop_fav_size rhs; bounds_checks := []; frame_fld := []; frame_typ := []; missing_fld := []; missing_pi := []; missing_sigma := []; missing_typ := [] let add_bounds_check bounds_check = bounds_checks := bounds_check :: !bounds_checks let add_frame_fld hpred = frame_fld := hpred :: !frame_fld let add_missing_fld hpred = missing_fld := hpred :: !missing_fld let add_frame_typ typing = frame_typ := typing :: !frame_typ let add_missing_typ typing = missing_typ := typing :: !missing_typ let add_missing_pi a = missing_pi := a :: !missing_pi let add_missing_sigma sigma = missing_sigma := sigma @ !missing_sigma (** atom considered array bounds check if it contains vars present in array size position in the pre *) let atom_is_array_bounds_check atom = let fav_a = Sil.atom_fav atom in Prop.atom_is_inequality atom && Sil.fav_exists fav_a (fun a -> Sil.fav_mem !fav_in_array_size a) let get_bounds_checks () = !bounds_checks let get_frame_fld () = !frame_fld let get_frame_typ () = !frame_typ let get_missing_fld () = !missing_fld let get_missing_pi () = !missing_pi let get_missing_sigma () = !missing_sigma let get_missing_typ () = !missing_typ let _d_missing sub = L.d_strln "SUB: "; L.d_increase_indent 1; Prop.d_sub sub; L.d_decrease_indent 1; if !missing_pi != [] && !missing_sigma != [] then (L.d_ln (); Prop.d_pi !missing_pi; L.d_str "*"; L.d_ln (); Prop.d_sigma !missing_sigma) else if !missing_pi != [] then (L.d_ln (); Prop.d_pi !missing_pi) else if !missing_sigma != [] then (L.d_ln (); Prop.d_sigma !missing_sigma); if !missing_fld != [] then begin L.d_ln (); L.d_strln "MISSING FLD: "; L.d_increase_indent 1; Prop.d_sigma !missing_fld; L.d_decrease_indent 1 end; if !missing_typ != [] then begin L.d_ln (); L.d_strln "MISSING TYPING: "; L.d_increase_indent 1; d_typings !missing_typ; L.d_decrease_indent 1 end let d_missing sub = (* optional print of missing: if print something, prepend with newline *) if !missing_pi != [] || !missing_sigma!=[] || !missing_fld != [] || !missing_typ != [] || Sil.sub_to_list sub != [] then begin L.d_ln (); L.d_str "["; _d_missing sub; L.d_str "]" end let d_frame_fld () = (* optional print of frame fld: if print something, prepend with newline *) if !frame_fld != [] then begin L.d_ln (); L.d_strln "[FRAME FLD:"; L.d_increase_indent 1; Prop.d_sigma !frame_fld; L.d_str "]"; L.d_decrease_indent 1 end let d_frame_typ () = (* optional print of frame typ: if print something, prepend with newline *) if !frame_typ != [] then begin L.d_ln (); L.d_strln "[FRAME TYPING:"; L.d_increase_indent 1; d_typings !frame_typ; L.d_str "]"; L.d_decrease_indent 1 end (** Dump an implication *) let d_implication (sub1, sub2) (p1, p2) = let p1, p2 = Prop.prop_sub sub1 p1, Prop.prop_sub sub2 p2 in L.d_strln "SUB:"; L.d_increase_indent 1; Prop.d_sub sub1; L.d_decrease_indent 1; L.d_ln (); Prop.d_prop p1; d_missing sub2; L.d_ln (); L.d_strln "|-"; Prop.d_prop p2; d_frame_fld (); d_frame_typ () let d_implication_error (s, subs, body) = let p1, p2 = !implication_lhs,!implication_rhs in let d_inner () = match body with | EXC_FALSE -> () | EXC_FALSE_HPRED hpred -> L.d_str " on "; Sil.d_hpred hpred; | EXC_FALSE_EXPS (e1, e2) -> L.d_str " on "; Sil.d_exp e1; L.d_str ","; Sil.d_exp e2; | EXC_FALSE_SEXPS (se1, se2) -> L.d_str " on "; Sil.d_sexp se1; L.d_str ","; Sil.d_sexp se2; | EXC_FALSE_ATOM a -> L.d_str " on "; Sil.d_atom a; | EXC_FALSE_SIGMA sigma -> L.d_str " on "; Prop.d_sigma sigma in L.d_ln (); L.d_strln "$$$$$$$ Implication"; d_implication subs (p1, p2); L.d_ln (); L.d_str ("$$$$$$ error: " ^ s); d_inner (); L.d_strln " returning FALSE"; L.d_ln () end let d_impl = ProverState.d_implication let d_impl_err = ProverState.d_implication_error (** extend a substitution *) let extend_sub sub v e = let new_sub = Sil.sub_of_list [v, e] in Sil.sub_join new_sub (Sil.sub_range_map (Sil.exp_sub new_sub) sub) (** Extend [sub1] and [sub2] to witnesses that each instance of [e1[sub1]] is an instance of [e2[sub2]]. Raise IMPL_FALSE if not possible. *) let exp_imply calc_missing subs e1_in e2_in : subst2 = let e1 = Prop.exp_normalize_noabs (fst subs) e1_in in let e2 = Prop.exp_normalize_noabs (snd subs) e2_in in let var_imply subs v1 v2 : subst2 = match Ident.is_primed v1, Ident.is_primed v2 with | false, false -> if Ident.equal v1 v2 then subs else if calc_missing && Ident.is_footprint v1 && Ident.is_footprint v2 then let () = ProverState.add_missing_pi (Sil.Aeq (e1_in, e2_in)) in subs else raise (IMPL_EXC ("exps", subs, (EXC_FALSE_EXPS (e1, e2)))) | true, false -> raise (IMPL_EXC ("exps", subs, (EXC_FALSE_EXPS (e1, e2)))) | false, true -> let sub2' = extend_sub (snd subs) v2 (Sil.exp_sub (fst subs) (Sil.Var v1)) in (fst subs, sub2') | true, true -> let v1' = Ident.create_fresh Ident.knormal in let sub1' = extend_sub (fst subs) v1 (Sil.Var v1') in let sub2' = extend_sub (snd subs) v2 (Sil.Var v1') in (sub1', sub2') in let rec do_imply subs e1 e2 : subst2 = L.d_str "do_imply "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); match e1, e2 with | Sil.Var v1, Sil.Var v2 -> var_imply subs v1 v2 | e1, Sil.Var v2 -> let occurs_check v e = (* check whether [v] occurs in normalized [e] *) if Sil.fav_mem (Sil.exp_fav e) v && Sil.fav_mem (Sil.exp_fav (Prop.exp_normalize_prop Prop.prop_emp e)) v then raise (IMPL_EXC ("occurs check", subs, (EXC_FALSE_EXPS (e1, e2)))) in if Ident.is_primed v2 then let () = occurs_check v2 e1 in let sub2' = extend_sub (snd subs) v2 e1 in (fst subs, sub2') else raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2)))) | e1, Sil.BinOp (Sil.PlusA, Sil.Var v2, e2) | e1, Sil.BinOp (Sil.PlusA, e2, Sil.Var v2) when Ident.is_primed v2 || Ident.is_footprint v2 -> do_imply subs (Sil.BinOp (Sil.MinusA, e1, e2)) (Sil.Var v2) | Sil.Var v1, e2 -> if calc_missing then let () = ProverState.add_missing_pi (Sil.Aeq (e1_in, e2_in)) in subs else raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2)))) | Sil.Lvar pv1, Sil.Const _ when Sil.pvar_is_global pv1 -> if calc_missing then let () = ProverState.add_missing_pi (Sil.Aeq (e1_in, e2_in)) in subs else raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2)))) | Sil.Lvar v1, Sil.Lvar v2 -> if Sil.pvar_equal v1 v2 then subs else raise (IMPL_EXC ("expressions not equal", subs, (EXC_FALSE_EXPS (e1, e2)))) | Sil.Const c1, Sil.Const c2 -> if (Sil.const_equal c1 c2) then subs else raise (IMPL_EXC ("constants not equal", subs, (EXC_FALSE_EXPS (e1, e2)))) | Sil.Const (Sil.Cint n1), Sil.BinOp (Sil.PlusPI, _, _) -> raise (IMPL_EXC ("pointer+index cannot evaluate to a constant", subs, (EXC_FALSE_EXPS (e1, e2)))) | Sil.Const (Sil.Cint n1), Sil.BinOp (Sil.PlusA, f1, Sil.Const (Sil.Cint n2)) -> do_imply subs (Sil.exp_int (n1 -- n2)) f1 | Sil.BinOp(op1, e1, f1), Sil.BinOp(op2, e2, f2) when op1 == op2 -> do_imply (do_imply subs e1 e2) f1 f2 | Sil.BinOp (Sil.PlusA, Sil.Var v1, e1), e2 -> do_imply subs (Sil.Var v1) (Sil.BinOp (Sil.MinusA, e2, e1)) | Sil.BinOp (Sil.PlusPI, Sil.Lvar pv1, e1), e2 -> do_imply subs (Sil.Lvar pv1) (Sil.BinOp (Sil.MinusA, e2, e1)) | e1, Sil.Const _ -> raise (IMPL_EXC ("lhs not constant", subs, (EXC_FALSE_EXPS (e1, e2)))) | Sil.Lfield(e1, fd1, t1), Sil.Lfield(e2, fd2, t2) when fd1 == fd2 -> do_imply subs e1 e2 | Sil.Lindex(e1, f1), Sil.Lindex(e2, f2) -> do_imply (do_imply subs e1 e2) f1 f2 | _ -> d_impl_err ("exp_imply not implemented", subs, (EXC_FALSE_EXPS (e1, e2))); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x)) in do_imply subs e1 e2 (** Convert a path (from lhs of a |-> to a field name present only in the rhs) into an id. If the lhs was a footprint var, the id is a new footprint var. Othewise it is a var with the path in the name and stamp - 1 *) let path_to_id path = let rec f = function | Sil.Var id -> if Ident.is_footprint id then None else Some (Ident.name_to_string (Ident.get_name id) ^ (string_of_int (Ident.get_stamp id))) | Sil.Lfield (e, fld, t) -> (match f e with | None -> None | Some s -> Some (s ^ "_" ^ (Ident.fieldname_to_string fld))) | Sil.Lindex (e, ind) -> (match f e with | None -> None | Some s -> Some (s ^ "_" ^ (Sil.exp_to_string ind))) | Sil.Lvar pv -> Some (Sil.exp_to_string path) | Sil.Const (Sil.Cstr s) -> Some ("_const_str_" ^ s) | Sil.Const (Sil.Cclass c) -> Some ("_const_class_" ^ Ident.name_to_string c) | Sil.Const _ -> None | _ -> L.d_str "path_to_id undefined on "; Sil.d_exp path; L.d_ln (); assert false (* None *) in if !Config.footprint then Ident.create_fresh Ident.kfootprint else match f path with | None -> Ident.create_fresh Ident.kfootprint | Some s -> Ident.create_path s (** Implication for the size of arrays *) let array_size_imply calc_missing subs size1 size2 indices2 = match size1, size2 with | _, Sil.Var _ | _, Sil.BinOp (Sil.PlusA, Sil.Var _, _) | _, Sil.BinOp (Sil.PlusA, _, Sil.Var _) | Sil.BinOp (Sil.Mult, _, _), _ -> (try exp_imply calc_missing subs size1 size2 with | IMPL_EXC (s, subs', x) -> raise (IMPL_EXC ("array size:" ^ s, subs', x))) | _ -> ProverState.add_bounds_check (ProverState.BCsize_imply (size1, size2, indices2)); subs (** Extend [sub1] and [sub2] to witnesses that each instance of [se1[sub1]] is an instance of [se2[sub2]]. Raise IMPL_FALSE if not possible. *) let rec sexp_imply source calc_index_frame calc_missing subs se1 se2 typ2 : subst2 * (Sil.strexp option) * (Sil.strexp option) = (* L.d_str "sexp_imply "; Sil.d_sexp se1; L.d_str " "; Sil.d_sexp se2; L.d_str " : "; Sil.d_typ_full typ2; L.d_ln(); *) match se1, se2 with | Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) -> (exp_imply calc_missing subs e1 e2, None, None) | Sil.Estruct (fsel1, inst1), Sil.Estruct (fsel2, _) -> let subs', fld_frame, fld_missing = struct_imply source calc_missing subs fsel1 fsel2 typ2 in let fld_frame_opt = if fld_frame != [] then Some (Sil.Estruct (fld_frame, inst1)) else None in let fld_missing_opt = if fld_missing != [] then Some (Sil.Estruct (fld_missing, inst1)) else None in subs', fld_frame_opt, fld_missing_opt | Sil.Estruct _, Sil.Eexp (e2, inst2) -> begin let e2' = Sil.exp_sub (snd subs) e2 in match e2' with | Sil.Var id2 when Ident.is_primed id2 -> let id2' = Ident.create_fresh Ident.knormal in let sub2' = extend_sub (snd subs) id2 (Sil.Var id2') in (fst subs, sub2'), None, None | _ -> d_impl_err ("sexp_imply not implemented", subs, (EXC_FALSE_SEXPS (se1, se2))); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x)) end | Sil.Earray (size1, esel1, inst1), Sil.Earray (size2, esel2, _) -> let indices2 = IList.map fst esel2 in let subs' = array_size_imply calc_missing subs size1 size2 indices2 in if Sil.strexp_equal se1 se2 then subs', None, None else begin let subs'', index_frame, index_missing = array_imply source calc_index_frame calc_missing subs' esel1 esel2 typ2 in let index_frame_opt = if index_frame != [] then Some (Sil.Earray (size1, index_frame, inst1)) else None in let index_missing_opt = if index_missing != [] && (!Config.Experiment.allow_missing_index_in_proc_call || !Config.footprint) then Some (Sil.Earray (size1, index_missing, inst1)) else None in subs'', index_frame_opt, index_missing_opt end | Sil.Eexp (_, inst), Sil.Estruct (fsel, inst') -> d_impl_err ("WARNING: function call with parameters of struct type, treating as unknown", subs, (EXC_FALSE_SEXPS (se1, se2))); let fsel' = let g (f, se) = (f, Sil.Eexp (Sil.Var (Ident.create_fresh Ident.knormal), inst)) in IList.map g fsel in sexp_imply source calc_index_frame calc_missing subs (Sil.Estruct (fsel', inst')) se2 typ2 | Sil.Eexp _, Sil.Earray (size, esel, inst) | Sil.Estruct _, Sil.Earray (size, esel, inst) -> let se1' = Sil.Earray (size, [(Sil.exp_zero, se1)], inst) in sexp_imply source calc_index_frame calc_missing subs se1' se2 typ2 | Sil.Earray (size, _, _), Sil.Eexp (e, inst) -> let se2' = Sil.Earray (size, [(Sil.exp_zero, se2)], inst) in let typ2' = Sil.Tarray (typ2, size) in sexp_imply source true calc_missing subs se1 se2' typ2' (* calculate index_frame because the rhs is a singleton array *) | _ -> d_impl_err ("sexp_imply not implemented", subs, (EXC_FALSE_SEXPS (se1, se2))); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x)) and struct_imply source calc_missing subs fsel1 fsel2 typ2 : subst2 * ((Ident.fieldname * Sil.strexp) list) * ((Ident.fieldname * Sil.strexp) list) = match fsel1, fsel2 with | _, [] -> subs, fsel1, [] | (f1, se1) :: fsel1', (f2, se2) :: fsel2' -> begin match Ident.fieldname_compare f1 f2 with | 0 -> let typ' = Sil.struct_typ_fld (Some Sil.Tvoid) f2 typ2 in let subs', se_frame, se_missing = sexp_imply (Sil.Lfield (source, f2, typ2)) false calc_missing subs se1 se2 typ' in let subs'', fld_frame, fld_missing = struct_imply source calc_missing subs' fsel1' fsel2' typ2 in let fld_frame' = match se_frame with | None -> fld_frame | Some se -> (f1, se):: fld_frame in let fld_missing' = match se_missing with | None -> fld_missing | Some se -> (f1, se):: fld_missing in subs'', fld_frame', fld_missing' | n when n < 0 -> let subs', fld_frame, fld_missing = struct_imply source calc_missing subs fsel1' fsel2 typ2 in subs', ((f1, se1) :: fld_frame), fld_missing | _ -> let typ' = Sil.struct_typ_fld (Some Sil.Tvoid) f2 typ2 in let subs' = sexp_imply_nolhs (Sil.Lfield (source, f2, typ2)) calc_missing subs se2 typ' in let subs', fld_frame, fld_missing = struct_imply source calc_missing subs' fsel1 fsel2' typ2 in let fld_missing' = (f2, se2) :: fld_missing in subs', fld_frame, fld_missing' end | [], (f2, se2) :: fsel2' -> let typ' = Sil.struct_typ_fld (Some Sil.Tvoid) f2 typ2 in let subs' = sexp_imply_nolhs (Sil.Lfield (source, f2, typ2)) calc_missing subs se2 typ' in let subs'', fld_frame, fld_missing = struct_imply source calc_missing subs' [] fsel2' typ2 in subs'', fld_frame, (f2, se2):: fld_missing and array_imply source calc_index_frame calc_missing subs esel1 esel2 typ2 : subst2 * ((Sil.exp * Sil.strexp) list) * ((Sil.exp * Sil.strexp) list) = let typ_elem = Sil.array_typ_elem (Some Sil.Tvoid) typ2 in match esel1, esel2 with | _,[] -> subs, esel1, [] | (e1, se1) :: esel1', (e2, se2) :: esel2' -> let e1n = Prop.exp_normalize_noabs (fst subs) e1 in let e2n = Prop.exp_normalize_noabs (snd subs) e2 in let n = Sil.exp_compare e1n e2n in if n < 0 then array_imply source calc_index_frame calc_missing subs esel1' esel2 typ2 else if n > 0 then array_imply source calc_index_frame calc_missing subs esel1 esel2' typ2 else (* n=0 *) let subs', _, _ = sexp_imply (Sil.Lindex (source, e1)) false calc_missing subs se1 se2 typ_elem in array_imply source calc_index_frame calc_missing subs' esel1' esel2' typ2 | [], (e2, se2) :: esel2' -> let subs' = sexp_imply_nolhs (Sil.Lindex (source, e2)) calc_missing subs se2 typ_elem in let subs'', index_frame, index_missing = array_imply source calc_index_frame calc_missing subs' [] esel2' typ2 in let index_missing' = (e2, se2) :: index_missing in subs'', index_frame, index_missing' and sexp_imply_nolhs source calc_missing subs se2 typ2 = match se2 with | Sil.Eexp (_e2, inst) -> let e2 = Sil.exp_sub (snd subs) _e2 in begin match e2 with | Sil.Var v2 when Ident.is_primed v2 -> let v2' = path_to_id source in (* L.d_str "called path_to_id on "; Sil.d_exp e2; L.d_str " returns "; Sil.d_exp (Sil.Var v2'); L.d_ln (); *) let sub2' = extend_sub (snd subs) v2 (Sil.Var v2') in (fst subs, sub2') | Sil.Var _ -> if calc_missing then subs else raise (IMPL_EXC ("exp only in rhs is not a primed var", subs, EXC_FALSE)) | Sil.Const _ when calc_missing -> let id = path_to_id source in ProverState.add_missing_pi (Sil.Aeq (Sil.Var id, _e2)); subs | _ -> raise (IMPL_EXC ("exp only in rhs is not a primed var", subs, EXC_FALSE)) end | Sil.Estruct (fsel2, _) -> (fun (x, y, z) -> x) (struct_imply source calc_missing subs [] fsel2 typ2) | Sil.Earray (_, esel2, _) -> (fun (x, y, z) -> x) (array_imply source false calc_missing subs [] esel2 typ2) let rec exp_list_imply calc_missing subs l1 l2 = match l1, l2 with | [],[] -> subs | e1:: l1, e2:: l2 -> exp_list_imply calc_missing (exp_imply calc_missing subs e1 e2) l1 l2 | _ -> assert false let filter_ptsto_lhs sub e0 = function | Sil.Hpointsto (e, _, _) -> if Sil.exp_equal e0 (Sil.exp_sub sub e) then Some () else None | _ -> None let filter_ne_lhs sub e0 = function | Sil.Hpointsto (e, _, _) -> if Sil.exp_equal e0 (Sil.exp_sub sub e) then Some () else None | Sil.Hlseg (Sil.Lseg_NE, _, e, _, _) -> if Sil.exp_equal e0 (Sil.exp_sub sub e) then Some () else None | Sil.Hdllseg (Sil.Lseg_NE, _, e, _, _, e', _) -> if Sil.exp_equal e0 (Sil.exp_sub sub e) || Sil.exp_equal e0 (Sil.exp_sub sub e') then Some () else None | _ -> None let filter_hpred sub hpred2 hpred1 = match (Sil.hpred_sub sub hpred1), hpred2 with | Sil.Hlseg(Sil.Lseg_NE, hpara1, e1, f1, el1), Sil.Hlseg(Sil.Lseg_PE, hpara2, e2, f2, el2) -> if Sil.hpred_equal (Sil.Hlseg(Sil.Lseg_PE, hpara1, e1, f1, el1)) hpred2 then Some false else None | Sil.Hlseg(Sil.Lseg_PE, hpara1, e1, f1, el1), Sil.Hlseg(Sil.Lseg_NE, hpara2, e2, f2, el2) -> if Sil.hpred_equal (Sil.Hlseg(Sil.Lseg_NE, hpara1, e1, f1, el1)) hpred2 then Some true else None (* return missing disequality *) | Sil.Hpointsto(e1, se1, te1), Sil.Hlseg(k, hpara2, e2, f2, el2) -> if Sil.exp_equal e1 e2 then Some false else None | hpred1, hpred2 -> if Sil.hpred_equal hpred1 hpred2 then Some false else None let hpred_has_primed_lhs sub hpred = let rec find_primed e = match e with | Sil.Lfield (e, _, _) -> find_primed e | Sil.Lindex (e, _) -> find_primed e | Sil.BinOp (Sil.PlusPI, e1, e2) -> find_primed e1 | _ -> Sil.fav_exists (Sil.exp_fav e) Ident.is_primed in let exp_has_primed e = find_primed (Sil.exp_sub sub e) in match hpred with | Sil.Hpointsto (e, _, _) -> exp_has_primed e | Sil.Hlseg (_, _, e, _, _) -> exp_has_primed e | Sil.Hdllseg (_, _, iF, oB, oF, iB, _) -> exp_has_primed iF && exp_has_primed iB let move_primed_lhs_from_front subs sigma = match sigma with | [] -> sigma | hpred:: sigma' -> if hpred_has_primed_lhs (snd subs) hpred then let (sigma_primed, sigma_unprimed) = IList.partition (hpred_has_primed_lhs (snd subs)) sigma in match sigma_unprimed with | [] -> raise (IMPL_EXC ("every hpred has primed lhs, cannot proceed", subs, (EXC_FALSE_SIGMA sigma))) | _:: _ -> sigma_unprimed @ sigma_primed else sigma let name_n = Ident.string_to_name "n" (** [expand_hpred_pointer calc_index_frame hpred] expands [hpred] if it is a |-> whose lhs is a Lfield or Lindex or ptr+off. Return [(changed, calc_index_frame', hpred')] where [changed] indicates whether the predicate has changed. *) let expand_hpred_pointer calc_index_frame hpred : bool * bool * Sil.hpred = let rec expand changed calc_index_frame hpred = match hpred with | Sil.Hpointsto (Sil.Lfield (e, fld, typ_fld), se, t) -> let t' = match t, typ_fld with | _, Sil.Tstruct _ -> (* the struct type of fld is known *) Sil.Sizeof (typ_fld, Sil.Subtype.exact) | Sil.Sizeof (_t, st), _ -> (* the struct type of fld is not known -- typically Tvoid *) Sil.Sizeof (Sil.Tstruct ([(fld, _t, Sil.item_annotation_empty)], [], Csu.Struct, None, [], [], Sil.item_annotation_empty), st) (* None as we don't know the stuct name *) | _ -> raise (Failure "expand_hpred_pointer: Unexpected non-sizeof type in Lfield") in let hpred' = Sil.Hpointsto (e, Sil.Estruct ([(fld, se)], Sil.inst_none), t') in expand true true hpred' | Sil.Hpointsto (Sil.Lindex (e, ind), se, t) -> let size = Sil.exp_get_undefined false in let t' = match t with | Sil.Sizeof (_t, st) -> Sil.Sizeof (Sil.Tarray (_t, size), st) | _ -> raise (Failure "expand_hpred_pointer: Unexpected non-sizeof type in Lindex") in let hpred' = Sil.Hpointsto (e, Sil.Earray (size, [(ind, se)], Sil.inst_none), t') in expand true true hpred' | Sil.Hpointsto (Sil.BinOp (Sil.PlusPI, e1, e2), Sil.Earray (size, esel, inst), t) -> let shift_exp e = Sil.BinOp (Sil.PlusA, e, e2) in let size' = shift_exp size in let esel' = IList.map (fun (e, se) -> (shift_exp e, se)) esel in let hpred' = Sil.Hpointsto (e1, Sil.Earray (size', esel', inst), t) in expand true calc_index_frame hpred' | _ -> changed, calc_index_frame, hpred in expand false calc_index_frame hpred let object_type = Mangled.from_string "java.lang.Object" let serializable_type = Mangled.from_string "java.io.Serializable" let cloneable_type = Mangled.from_string "java.lang.Cloneable" let is_interface tenv c = match Sil.tenv_lookup tenv (Typename.TN_csu (Csu.Class, c)) with | Some (Sil.Tstruct (fields, sfields, Csu.Class, Some c1', supers1, methods, iann)) -> (IList.length fields = 0) && (IList.length methods = 0) | _ -> false (** check if c1 is a subclass of c2 *) let check_subclass_tenv tenv c1 c2 = let rec check (_, c) = Mangled.equal c c2 || (Mangled.equal c2 object_type) || match Sil.tenv_lookup tenv (Typename.TN_csu (Csu.Class, c)) with | Some (Sil.Tstruct (_, _, Csu.Class, Some c1', supers1, _, _)) -> IList.exists check supers1 | _ -> false in (check (Csu.Class, c1)) let check_subclass tenv c1 c2 = let f = check_subclass_tenv tenv in Sil.Subtype.check_subtype f c1 c2 (** check that t1 and t2 are the same primitive type *) let check_subtype_basic_type t1 t2 = match t2 with | (Sil.Tint Sil.IInt) | (Sil.Tint Sil.IBool) | (Sil.Tint Sil.IChar) | (Sil.Tfloat Sil.FDouble) | (Sil.Tfloat Sil.FFloat) | (Sil.Tint Sil.ILong) | (Sil.Tint Sil.IShort) -> Sil.typ_equal t1 t2 | _ -> false (** check if t1 is a subtype of t2 *) let rec check_subtype tenv t1 t2 = match t1, t2 with | Sil.Tstruct (_, _, Csu.Class, Some c1, _, _, _), Sil.Tstruct (_, _, Csu.Class, Some c2, _, _, _) -> (check_subclass tenv c1 c2) | Sil.Tarray (dom_type1, _), Sil.Tarray (dom_type2, _) -> check_subtype tenv dom_type1 dom_type2 | Sil.Tptr (dom_type1, _), Sil.Tptr (dom_type2, _) -> check_subtype tenv dom_type1 dom_type2 | Sil.Tarray _, Sil.Tstruct (_, _, Csu.Class, Some c2, _, _, _) -> (Mangled.equal c2 serializable_type) || (Mangled.equal c2 cloneable_type) || (Mangled.equal c2 object_type) | _ -> (check_subtype_basic_type t1 t2) let rec case_analysis_type tenv (t1, st1) (t2, st2) = match t1, t2 with | Sil.Tstruct (_, _, Csu.Class, Some c1, _, _, _), Sil.Tstruct (_, _, Csu.Class, Some c2, _, _, _) -> (Sil.Subtype.case_analysis (c1, st1) (c2, st2) (check_subclass tenv) (is_interface tenv)) | Sil.Tarray (dom_type1, _), Sil.Tarray (dom_type2, _) -> (case_analysis_type tenv (dom_type1, st1) (dom_type2, st2)) | Sil.Tptr (dom_type1, _), Sil.Tptr (dom_type2, _) -> (case_analysis_type tenv (dom_type1, st1) (dom_type2, st2)) | Sil.Tstruct (_, _, Csu.Class, Some c1, _, _, _), Sil.Tarray _ -> if ((Mangled.equal c1 serializable_type) || (Mangled.equal c1 cloneable_type) || (Mangled.equal c1 object_type)) && (st1 <> Sil.Subtype.exact) then (Some st1, None) else (None, Some st1) | _ -> if (check_subtype_basic_type t1 t2) then (Some st1, None) else (None, Some st1) (** perform case analysis on [texp1 <: texp2], and return the updated types in the true and false case, if they are possible *) let subtype_case_analysis tenv texp1 texp2 = match texp1, texp2 with | Sil.Sizeof (t1, st1), Sil.Sizeof (t2, st2) -> begin let pos_opt, neg_opt = case_analysis_type tenv (t1, st1) (t2, st2) in let pos_type_opt = match pos_opt with | None -> None | Some st1' -> let t1' = if (check_subtype tenv t1 t2) then t1 else t2 in Some (Sil.Sizeof (t1', st1')) in let neg_type_opt = match neg_opt with | None -> None | Some st1' -> Some (Sil.Sizeof (t1, st1')) in pos_type_opt, neg_type_opt end | _ -> (* don't know, consider both possibilities *) Some texp1, Some texp1 let cast_exception tenv texp1 texp2 e1 subs = let _ = match texp1, texp2 with | Sil.Sizeof (t1, st1), Sil.Sizeof (t2, st2) -> if (!Config.developer_mode) || ((Sil.Subtype.is_cast st2) && not (check_subtype tenv t1 t2)) then ProverState.checks := Class_cast_check (texp1, texp2, e1) :: !ProverState.checks | _ -> () in raise (IMPL_EXC ("class cast exception", subs, EXC_FALSE)) (** Check the equality of two types ignoring flags in the subtyping components *) let texp_equal_modulo_subtype_flag texp1 texp2 = match texp1, texp2 with | Sil.Sizeof(t1, st1), Sil.Sizeof (t2, st2) -> Sil.typ_equal t1 t2 && Sil.Subtype.equal_modulo_flag st1 st2 | _ -> Sil.exp_equal texp1 texp2 (** check implication between type expressions *) let texp_imply tenv subs texp1 texp2 e1 calc_missing = let types_subject_to_cast = (* check whether the types could be subject to dynamic cast: classes and arrays *) match texp1, texp2 with | Sil.Sizeof (Sil.Tstruct _, _), Sil.Sizeof (Sil.Tstruct _, _) | Sil.Sizeof (Sil.Tarray _, _), Sil.Sizeof (Sil.Tarray _, _) | Sil.Sizeof (Sil.Tarray _, _), Sil.Sizeof (Sil.Tstruct _, _) | Sil.Sizeof (Sil.Tstruct _, _), Sil.Sizeof (Sil.Tarray _, _) -> true | _ -> false in if !Config.curr_language = Config.Java && types_subject_to_cast then begin let pos_type_opt, neg_type_opt = subtype_case_analysis tenv texp1 texp2 in let has_changed = match pos_type_opt with | Some texp1' -> not (texp_equal_modulo_subtype_flag texp1' texp1) | None -> false in if (calc_missing) then (* footprint *) begin match pos_type_opt with | None -> cast_exception tenv texp1 texp2 e1 subs | Some texp1' -> if has_changed then None, pos_type_opt (* missing *) else pos_type_opt, None (* frame *) end else (* re-execution *) begin match neg_type_opt with | Some _ -> cast_exception tenv texp1 texp2 e1 subs | None -> if has_changed then cast_exception tenv texp1 texp2 e1 subs (* missing *) else pos_type_opt, None (* frame *) end end else None, None (** pre-process implication between a non-array and an array: the non-array is turned into an array of size given by its type only active in type_size mode *) let sexp_imply_preprocess se1 texp1 se2 = match se1, texp1, se2 with | Sil.Eexp (e1, inst), Sil.Sizeof _, Sil.Earray _ when !Config.type_size -> let se1' = Sil.Earray (texp1, [(Sil.exp_zero, se1)], inst) in L.d_strln_color Orange "sexp_imply_preprocess"; L.d_str " se1: "; Sil.d_sexp se1; L.d_ln (); L.d_str " se1': "; Sil.d_sexp se1'; L.d_ln (); se1' | _ -> se1 (** handle parameter subtype for java: when the type of a callee variable in the caller is a strict subtype of the one in the callee, add a type frame and type missing *) let handle_parameter_subtype tenv prop1 sigma2 subs (e1, se1, texp1) (se2, texp2) = let is_callee = match e1 with | Sil.Lvar pv -> Sil.pvar_is_callee pv | _ -> false in let is_allocated_lhs e = let filter = function | Sil.Hpointsto(e', _, _) -> Sil.exp_equal e' e | _ -> false in IList.exists filter (Prop.get_sigma prop1) in let type_rhs e = let sub_opt = ref None in let filter = function | Sil.Hpointsto(e', _, Sil.Sizeof(t, sub)) when Sil.exp_equal e' e -> sub_opt := Some (t, sub); true | _ -> false in if IList.exists filter sigma2 then !sub_opt else None in let add_subtype () = match texp1, texp2, se1, se2 with | Sil.Sizeof(Sil.Tptr (_t1, _), _), Sil.Sizeof(Sil.Tptr (_t2, _), sub2), Sil.Eexp(e1', _), Sil.Eexp(e2', _) when not (is_allocated_lhs e1') -> begin let t1, t2 = Sil.expand_type tenv _t1, Sil.expand_type tenv _t2 in match type_rhs e2' with | Some (t2_ptsto , sub2) -> if not (Sil.typ_equal t1 t2) && check_subtype tenv t1 t2 then begin let pos_type_opt, _ = subtype_case_analysis tenv (Sil.Sizeof(t1, Sil.Subtype.subtypes)) (Sil.Sizeof(t2_ptsto, sub2)) in match pos_type_opt with | Some t1_noptr -> ProverState.add_frame_typ (e1', t1_noptr); ProverState.add_missing_typ (e2', t1_noptr) | None -> cast_exception tenv texp1 texp2 e1 subs end | None -> () end | _ -> () in if is_callee && !Config.footprint && (!Config.Experiment.activate_subtyping_in_cpp || !Config.curr_language = Config.Java) then add_subtype () let rec hpred_imply tenv calc_index_frame calc_missing subs prop1 sigma2 hpred2 : subst2 * Prop.normal Prop.t = match hpred2 with | Sil.Hpointsto (_e2, se2, texp2) -> let e2 = Sil.exp_sub (snd subs) _e2 in let _ = match e2 with | Sil.Lvar p -> () | Sil.Var v -> if Ident.is_primed v then (d_impl_err ("rhs |-> not implemented", subs, (EXC_FALSE_HPRED hpred2)); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x))) | _ -> () in (match Prop.prop_iter_create prop1 with | None -> raise (IMPL_EXC ("lhs is empty", subs, EXC_FALSE)) | Some iter1 -> (match Prop.prop_iter_find iter1 (filter_ne_lhs (fst subs) e2) with | None -> raise (IMPL_EXC ("lhs does not have e|->", subs, (EXC_FALSE_HPRED hpred2))) | Some iter1' -> (match Prop.prop_iter_current iter1' with | Sil.Hpointsto (e1, se1, texp1), _ -> (try let typ2 = Sil.texp_to_typ (Some Sil.Tvoid) texp2 in let typing_frame, typing_missing = texp_imply tenv subs texp1 texp2 e1 calc_missing in let se1' = sexp_imply_preprocess se1 texp1 se2 in let subs', fld_frame, fld_missing = sexp_imply e1 calc_index_frame calc_missing subs se1' se2 typ2 in if calc_missing then begin handle_parameter_subtype tenv prop1 sigma2 subs (e1, se1, texp1) (se2, texp2); (match fld_missing with | Some fld_missing -> ProverState.add_missing_fld (Sil.Hpointsto(_e2, fld_missing, texp1)) | None -> ()); (match fld_frame with | Some fld_frame -> ProverState.add_frame_fld (Sil.Hpointsto(e1, fld_frame, texp1)) | None -> ()); (match typing_missing with | Some t_missing -> ProverState.add_missing_typ (_e2, t_missing) | None -> ()); (match typing_frame with | Some t_frame -> ProverState.add_frame_typ (e1, t_frame) | None -> ()) end; let prop1' = Prop.prop_iter_remove_curr_then_to_prop iter1' in (subs', prop1') with | IMPL_EXC (s, _, body) when calc_missing -> raise (MISSING_EXC s)) | Sil.Hlseg (Sil.Lseg_NE, para1, e1, f1, elist1), _ -> (** Unroll lseg *) let n' = Sil.Var (Ident.create_fresh Ident.kprimed) in let (_, para_inst1) = Sil.hpara_instantiate para1 e1 n' elist1 in let hpred_list1 = para_inst1@[Prop.mk_lseg Sil.Lseg_PE para1 n' f1 elist1] in let iter1'' = Prop.prop_iter_update_current_by_list iter1' hpred_list1 in L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> hpred_imply tenv calc_index_frame calc_missing subs (Prop.prop_iter_to_prop iter1'') sigma2 hpred2) in L.d_decrease_indent 1; res | Sil.Hdllseg (Sil.Lseg_NE, para1, iF1, oB1, oF1, iB1, elist1), _ when Sil.exp_equal (Sil.exp_sub (fst subs) iF1) e2 -> (** Unroll dllseg forward *) let n' = Sil.Var (Ident.create_fresh Ident.kprimed) in let (_, para_inst1) = Sil.hpara_dll_instantiate para1 iF1 oB1 n' elist1 in let hpred_list1 = para_inst1@[Prop.mk_dllseg Sil.Lseg_PE para1 n' iF1 oF1 iB1 elist1] in let iter1'' = Prop.prop_iter_update_current_by_list iter1' hpred_list1 in L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> hpred_imply tenv calc_index_frame calc_missing subs (Prop.prop_iter_to_prop iter1'') sigma2 hpred2) in L.d_decrease_indent 1; res | Sil.Hdllseg (Sil.Lseg_NE, para1, iF1, oB1, oF1, iB1, elist1), _ when Sil.exp_equal (Sil.exp_sub (fst subs) iB1) e2 -> (** Unroll dllseg backward *) let n' = Sil.Var (Ident.create_fresh Ident.kprimed) in let (_, para_inst1) = Sil.hpara_dll_instantiate para1 iB1 n' oF1 elist1 in let hpred_list1 = para_inst1@[Prop.mk_dllseg Sil.Lseg_PE para1 iF1 oB1 iB1 n' elist1] in let iter1'' = Prop.prop_iter_update_current_by_list iter1' hpred_list1 in L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> hpred_imply tenv calc_index_frame calc_missing subs (Prop.prop_iter_to_prop iter1'') sigma2 hpred2) in L.d_decrease_indent 1; res | _ -> assert false ) ) ) | Sil.Hlseg (k, para2, _e2, _f2, _elist2) -> (* for now ignore implications between PE and NE *) let e2, f2 = Sil.exp_sub (snd subs) _e2, Sil.exp_sub (snd subs) _f2 in let _ = match e2 with | Sil.Lvar p -> () | Sil.Var v -> if Ident.is_primed v then (d_impl_err ("rhs |-> not implemented", subs, (EXC_FALSE_HPRED hpred2)); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x))) | _ -> () in if Sil.exp_equal e2 f2 && k == Sil.Lseg_PE then (subs, prop1) else (match Prop.prop_iter_create prop1 with | None -> raise (IMPL_EXC ("lhs is empty", subs, EXC_FALSE)) | Some iter1 -> (match Prop.prop_iter_find iter1 (filter_hpred (fst subs) (Sil.hpred_sub (snd subs) hpred2)) with | None -> let elist2 = IList.map (fun e -> Sil.exp_sub (snd subs) e) _elist2 in let _, para_inst2 = Sil.hpara_instantiate para2 e2 f2 elist2 in L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> sigma_imply tenv calc_index_frame false subs prop1 para_inst2) in (* calc_missing is false as we're checking an instantiation of the original list *) L.d_decrease_indent 1; res | Some iter1' -> let elist2 = IList.map (fun e -> Sil.exp_sub (snd subs) e) _elist2 in let subs' = exp_list_imply calc_missing subs (f2:: elist2) (f2:: elist2) in (* force instantiation of existentials *) let prop1' = Prop.prop_iter_remove_curr_then_to_prop iter1' in let hpred1 = match Prop.prop_iter_current iter1' with | hpred1, b -> if b then ProverState.add_missing_pi (Sil.Aneq(_e2, _f2)); (* for PE |- NE *) hpred1 in match hpred1 with | Sil.Hlseg _ -> (subs', prop1') | Sil.Hpointsto _ -> (* unroll rhs list and try again *) let n' = Sil.Var (Ident.create_fresh Ident.kprimed) in let (_, para_inst2) = Sil.hpara_instantiate para2 _e2 n' elist2 in let hpred_list2 = para_inst2@[Prop.mk_lseg Sil.Lseg_PE para2 n' _f2 _elist2] in L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> try sigma_imply tenv calc_index_frame calc_missing subs prop1 hpred_list2 with exn when exn_not_failure exn -> begin (L.d_strln_color Red) "backtracking lseg: trying rhs of length exactly 1"; let (_, para_inst3) = Sil.hpara_instantiate para2 _e2 _f2 elist2 in sigma_imply tenv calc_index_frame calc_missing subs prop1 para_inst3 end) in L.d_decrease_indent 1; res | Sil.Hdllseg _ -> assert false ) ) | Sil.Hdllseg (Sil.Lseg_PE, _, _, _, _, _, _) -> (d_impl_err ("rhs dllsegPE not implemented", subs, (EXC_FALSE_HPRED hpred2)); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x))) | Sil.Hdllseg (k, para2, iF2, oB2, oF2, iB2, elist2) -> (* for now ignore implications between PE and NE *) let iF2, oF2 = Sil.exp_sub (snd subs) iF2, Sil.exp_sub (snd subs) oF2 in let iB2, oB2 = Sil.exp_sub (snd subs) iB2, Sil.exp_sub (snd subs) oB2 in let _ = match oF2 with | Sil.Lvar p -> () | Sil.Var v -> if Ident.is_primed v then (d_impl_err ("rhs dllseg not implemented", subs, (EXC_FALSE_HPRED hpred2)); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x))) | _ -> () in let _ = match oB2 with | Sil.Lvar p -> () | Sil.Var v -> if Ident.is_primed v then (d_impl_err ("rhs dllseg not implemented", subs, (EXC_FALSE_HPRED hpred2)); raise (Exceptions.Abduction_case_not_implemented (try assert false with Assert_failure x -> x))) | _ -> () in (match Prop.prop_iter_create prop1 with | None -> raise (IMPL_EXC ("lhs is empty", subs, EXC_FALSE)) | Some iter1 -> (match Prop.prop_iter_find iter1 (filter_hpred (fst subs) (Sil.hpred_sub (snd subs) hpred2)) with | None -> let elist2 = IList.map (fun e -> Sil.exp_sub (snd subs) e) elist2 in let _, para_inst2 = if Sil.exp_equal iF2 iB2 then Sil.hpara_dll_instantiate para2 iF2 oB2 oF2 elist2 else assert false in (** Only base case of rhs list considered for now *) L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> sigma_imply tenv calc_index_frame false subs prop1 para_inst2) in (* calc_missing is false as we're checking an instantiation of the original list *) L.d_decrease_indent 1; res | Some iter1' -> (** Only consider implications between identical listsegs for now *) let elist2 = IList.map (fun e -> Sil.exp_sub (snd subs) e) elist2 in let subs' = exp_list_imply calc_missing subs (iF2:: oB2:: oF2:: iB2:: elist2) (iF2:: oB2:: oF2:: iB2:: elist2) in (* force instantiation of existentials *) let prop1' = Prop.prop_iter_remove_curr_then_to_prop iter1' in (subs', prop1') ) ) (** Check that [sigma1] implies [sigma2] and return two substitution instantiations for the primed variables of [sigma1] and [sigma2] and a frame. Raise IMPL_FALSE if the implication cannot be proven. *) and sigma_imply tenv calc_index_frame calc_missing subs prop1 sigma2 : (subst2 * Prop.normal Prop.t) = let is_constant_string_class subs = function (* if the hpred represents a constant string, return the string *) | Sil.Hpointsto (_e2, _, _) -> let e2 = Sil.exp_sub (snd subs) _e2 in (match e2 with | Sil.Const (Sil.Cstr s) -> Some (s, true) | Sil.Const (Sil.Cclass c) -> Some (Ident.name_to_string c, false) | _ -> None) | _ -> None in let mk_constant_string_hpred s = (* create an hpred from a constant string *) let size = Sil.exp_int (Sil.Int.of_int (1 + String.length s)) in let root = Sil.Const (Sil.Cstr s) in let sexp = let index = Sil.exp_int (Sil.Int.of_int (String.length s)) in match !Config.curr_language with | Config.C_CPP -> Sil.Earray (size, [(index, Sil.Eexp (Sil.exp_zero, Sil.inst_none))], Sil.inst_none) | Config.Java -> let mk_fld_sexp s = let fld = Ident.create_fieldname (Mangled.from_string s) 0 in let se = Sil.Eexp (Sil.Var (Ident.create_fresh Ident.kprimed), Sil.Inone) in (fld, se) in let fields = ["java.lang.String.count"; "java.lang.String.hash"; "java.lang.String.offset"; "java.lang.String.value"] in Sil.Estruct (IList.map mk_fld_sexp fields, Sil.inst_none) in let const_string_texp = match !Config.curr_language with | Config.C_CPP -> Sil.Sizeof (Sil.Tarray (Sil.Tint Sil.IChar, size), Sil.Subtype.exact) | Config.Java -> let object_type = Typename.TN_csu (Csu.Class, Mangled.from_string "java.lang.String") in let typ = match Sil.tenv_lookup tenv object_type with | Some typ -> typ | None -> assert false in Sil.Sizeof (typ, Sil.Subtype.exact) in Sil.Hpointsto (root, sexp, const_string_texp) in let mk_constant_class_hpred s = (* creat an hpred from a constant class *) let root = Sil.Const (Sil.Cclass (Ident.string_to_name s)) in let sexp = (* TODO: add appropriate fields *) Sil.Estruct ([(Ident.create_fieldname (Mangled.from_string "java.lang.Class.name") 0, Sil.Eexp ((Sil.Const (Sil.Cstr s), Sil.Inone)))], Sil.inst_none) in let class_texp = let class_type = Typename.TN_csu (Csu.Class, Mangled.from_string "java.lang.Class") in let typ = match Sil.tenv_lookup tenv class_type with | Some typ -> typ | None -> assert false in Sil.Sizeof (typ, Sil.Subtype.exact) in Sil.Hpointsto (root, sexp, class_texp) in try (match move_primed_lhs_from_front subs sigma2 with | [] -> L.d_strln "Final Implication"; d_impl subs (prop1, Prop.prop_emp); (subs, prop1) | hpred2 :: sigma2' -> L.d_strln "Current Implication"; d_impl subs (prop1, Prop.normalize (Prop.from_sigma (hpred2 :: sigma2'))); L.d_ln (); L.d_ln (); let normal_case hpred2' = let (subs', prop1') = try L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> hpred_imply tenv calc_index_frame calc_missing subs prop1 sigma2 hpred2') in L.d_decrease_indent 1; res with IMPL_EXC _ when calc_missing -> begin match is_constant_string_class subs hpred2' with | Some (s, is_string) -> (* allocate constant string hpred1', do implication, then add hpred1' as missing *) let hpred1' = if is_string then mk_constant_string_hpred s else mk_constant_class_hpred s in let prop1' = Prop.normalize (Prop.replace_sigma (hpred1' :: Prop.get_sigma prop1) prop1) in let subs', frame_prop = hpred_imply tenv calc_index_frame calc_missing subs prop1' sigma2 hpred2' in (* ProverState.add_missing_sigma [hpred1']; *) subs', frame_prop | None -> let subs' = match hpred2' with | Sil.Hpointsto (e2, se2, te2) -> let typ2 = Sil.texp_to_typ (Some Sil.Tvoid) te2 in sexp_imply_nolhs e2 calc_missing subs se2 typ2 | _ -> subs in ProverState.add_missing_sigma [hpred2']; subs', prop1 end in L.d_increase_indent 1; let res = decrease_indent_when_exception (fun () -> sigma_imply tenv calc_index_frame calc_missing subs' prop1' sigma2') in L.d_decrease_indent 1; res in (match hpred2 with | Sil.Hpointsto(_e2, se2, t) -> let changed, calc_index_frame', hpred2' = expand_hpred_pointer calc_index_frame (Sil.Hpointsto (Prop.exp_normalize_noabs (snd subs) _e2, se2, t)) in if changed then sigma_imply tenv calc_index_frame' calc_missing subs prop1 (hpred2' :: sigma2') (* calc_index_frame=true *) else normal_case hpred2' | _ -> normal_case hpred2) ) with IMPL_EXC (s, _, _) when calc_missing -> L.d_strln ("Adding rhs as missing: " ^ s); ProverState.add_missing_sigma sigma2; subs, prop1 let prepare_prop_for_implication (sub1, sub2) pi1 sigma1 = let pi1' = (Prop.pi_sub sub2 (ProverState.get_missing_pi ())) @ pi1 in let sigma1' = (Prop.sigma_sub sub2 (ProverState.get_missing_sigma ())) @ sigma1 in let ep = Prop.replace_sub sub2 (Prop.replace_sigma sigma1' (Prop.from_pi pi1')) in Prop.normalize ep let imply_pi calc_missing (sub1, sub2) prop pi2 = let do_atom a = let a' = Sil.atom_sub sub2 a in try if not (check_atom prop a') then raise (IMPL_EXC ("rhs atom missing in lhs", (sub1, sub2), (EXC_FALSE_ATOM a'))) with | IMPL_EXC _ when calc_missing -> L.d_str "imply_pi: adding missing atom "; Sil.d_atom a; L.d_ln (); ProverState.add_missing_pi a in IList.iter do_atom pi2 let imply_atom calc_missing (sub1, sub2) prop a = imply_pi calc_missing (sub1, sub2) prop [a] (** Check pure implications before looking at the spatial part. Add necessary instantiations for equalities and check that instantiations are possible for disequalities. *) let rec pre_check_pure_implication calc_missing subs pi1 pi2 = match pi2 with | [] -> subs | (Sil.Aeq (e2_in, f2_in) as a) :: pi2' when not (Prop.atom_is_inequality a) -> let e2, f2 = Sil.exp_sub (snd subs) e2_in, Sil.exp_sub (snd subs) f2_in in if Sil.exp_equal e2 f2 then pre_check_pure_implication calc_missing subs pi1 pi2' else (match e2, f2 with | Sil.Var v2, f2 when Ident.is_primed v2 (* && not (Sil.mem_sub v2 (snd subs)) *) -> (* The commented-out condition should always hold. *) let sub2' = extend_sub (snd subs) v2 f2 in pre_check_pure_implication calc_missing (fst subs, sub2') pi1 pi2' | e2, Sil.Var v2 when Ident.is_primed v2 (* && not (Sil.mem_sub v2 (snd subs)) *) -> (* The commented-out condition should always hold. *) let sub2' = extend_sub (snd subs) v2 e2 in pre_check_pure_implication calc_missing (fst subs, sub2') pi1 pi2' | e2, f2 -> let pi1' = Prop.pi_sub (fst subs) pi1 in let prop_for_impl = prepare_prop_for_implication subs pi1' [] in imply_atom calc_missing subs prop_for_impl (Sil.Aeq (e2_in, f2_in)); pre_check_pure_implication calc_missing subs pi1 pi2' ) | Sil.Aeq (e1, e2) :: pi2' -> (* must be an inequality *) pre_check_pure_implication calc_missing subs pi1 pi2' | Sil.Aneq (Sil.Var v, f2):: pi2' -> if not (Ident.is_primed v || calc_missing) then raise (IMPL_EXC("ineq e2=f2 in rhs with e2 not primed var", (Sil.sub_empty, Sil.sub_empty), EXC_FALSE)) else pre_check_pure_implication calc_missing subs pi1 pi2' | Sil.Aneq (e1, e2):: pi2' -> if calc_missing then pre_check_pure_implication calc_missing subs pi1 pi2' else raise (IMPL_EXC ("ineq e2=f2 in rhs with e2 not primed var", (Sil.sub_empty, Sil.sub_empty), EXC_FALSE)) (** Perform the array bound checks delayed (to instantiate variables) by the prover. If there is a provable violation of the array bounds, set the prover status to Bounds_check and make the proof fail. *) let check_array_bounds (sub1, sub2) prop = let check_failed atom = ProverState.checks := Bounds_check :: !ProverState.checks; L.d_str_color Red "bounds_check failed: provable atom: "; Sil.d_atom atom; L.d_ln(); if (not !Config.Experiment.bound_error_allowed_in_procedure_call) then raise (IMPL_EXC ("bounds check", (sub1, sub2), EXC_FALSE)) in let fail_if_le e' e'' = let lt_ineq = Prop.mk_inequality (Sil.BinOp(Sil.Le, e', e'')) in if check_atom prop lt_ineq then check_failed lt_ineq in let check_bound = function | ProverState.BCsize_imply (_size1, _size2, _indices2) -> let size1 = Sil.exp_sub sub1 _size1 in let size2 = Sil.exp_sub sub2 _size2 in (* L.d_strln_color Orange "check_bound "; Sil.d_exp size1; L.d_str " "; Sil.d_exp size2; L.d_ln(); *) let indices_to_check = match size2 with | _ -> [Sil.BinOp(Sil.PlusA, size2, Sil.exp_minus_one)] (* only check size *) in IList.iter (fail_if_le size1) indices_to_check | ProverState.BCfrom_pre _atom -> let atom_neg = Prop.atom_negate (Sil.atom_sub sub2 _atom) in (* L.d_strln_color Orange "BCFrom_pre"; Sil.d_atom atom_neg; L.d_ln (); *) if check_atom prop atom_neg then check_failed atom_neg in IList.iter check_bound (ProverState.get_bounds_checks ()) (** [check_implication_base] returns true if [prop1|-prop2], ignoring the footprint part of the props *) let check_implication_base pname tenv check_frame_empty calc_missing prop1 prop2 = try ProverState.reset prop1 prop2; let filter (id, e) = Ident.is_normal id && Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in let sub1_base = Sil.sub_filter_pair filter (Prop.get_sub prop1) in let pi1, pi2 = Prop.get_pure prop1, Prop.get_pure prop2 in let sigma1, sigma2 = Prop.get_sigma prop1, Prop.get_sigma prop2 in let subs = pre_check_pure_implication calc_missing (Prop.get_sub prop1, sub1_base) pi1 pi2 in let pi2_bcheck, pi2_nobcheck = (* find bounds checks implicit in pi2 *) IList.partition ProverState.atom_is_array_bounds_check pi2 in IList.iter (fun a -> ProverState.add_bounds_check (ProverState.BCfrom_pre a)) pi2_bcheck; L.d_strln "pre_check_pure_implication"; L.d_strln "pi1:"; L.d_increase_indent 1; Prop.d_pi pi1; L.d_decrease_indent 1; L.d_ln (); L.d_strln "pi2:"; L.d_increase_indent 1; Prop.d_pi pi2; L.d_decrease_indent 1; L.d_ln (); if pi2_bcheck != [] then (L.d_str "pi2 bounds checks: "; Prop.d_pi pi2_bcheck; L.d_ln ()); L.d_strln "returns"; L.d_strln "sub1: "; L.d_increase_indent 1; Prop.d_sub (fst subs); L.d_decrease_indent 1; L.d_ln (); L.d_strln "sub2: "; L.d_increase_indent 1; Prop.d_sub (snd subs); L.d_decrease_indent 1; L.d_ln (); let (sub1, sub2), frame_prop = sigma_imply tenv false calc_missing subs prop1 sigma2 in let pi1' = Prop.pi_sub sub1 pi1 in let sigma1' = Prop.sigma_sub sub1 sigma1 in L.d_ln (); let prop_for_impl = prepare_prop_for_implication (sub1, sub2) pi1' sigma1' in imply_pi calc_missing (sub1, sub2) prop_for_impl pi2_nobcheck; (* only deal with pi2 without bound checks *) check_array_bounds (sub1, sub2) prop_for_impl; (* handle implicit bound checks, plus those from array_size_imply *) L.d_strln "Result of Abduction"; L.d_increase_indent 1; d_impl (sub1, sub2) (prop1, prop2); L.d_decrease_indent 1; L.d_ln (); L.d_strln"returning TRUE"; let frame = Prop.get_sigma frame_prop in if check_frame_empty && frame != [] then raise (IMPL_EXC("frame not empty", subs, EXC_FALSE)); Some ((sub1, sub2), frame) with | IMPL_EXC (s, subs, body) -> d_impl_err (s, subs, body); None | MISSING_EXC s -> L.d_strln ("WARNING: footprint failed to find MISSING because: " ^ s); None | (Exceptions.Abduction_case_not_implemented mloc as exn) -> Reporting.log_error pname exn; None type implication_result = | ImplOK of (check list * Sil.subst * Sil.subst * Sil.hpred list * (Sil.atom list) * (Sil.hpred list) * (Sil.hpred list) * (Sil.hpred list) * ((Sil.exp * Sil.exp) list) * ((Sil.exp * Sil.exp) list)) | ImplFail of check list (** [check_implication_for_footprint p1 p2] returns [Some(sub, frame, missing)] if [sub(p1 * missing) |- sub(p2 * frame)] where [sub] is a substitution which instantiates the primed vars of [p1] and [p2], which are assumed to be disjoint. *) let check_implication_for_footprint pname tenv p1 (p2: Prop.exposed Prop.t) = let check_frame_empty = false in let calc_missing = true in match check_implication_base pname tenv check_frame_empty calc_missing p1 p2 with | Some ((sub1, sub2), frame) -> ImplOK (!ProverState.checks, sub1, sub2, frame, ProverState.get_missing_pi (), ProverState.get_missing_sigma (), ProverState.get_frame_fld (), ProverState.get_missing_fld (), ProverState.get_frame_typ (), ProverState.get_missing_typ ()) | None -> ImplFail !ProverState.checks (** [check_implication p1 p2] returns true if [p1|-p2] *) let check_implication pname tenv p1 p2 = let check p1 p2 = let check_frame_empty = true in let calc_missing = false in match check_implication_base pname tenv check_frame_empty calc_missing p1 p2 with | Some _ -> true | None -> false in check p1 p2 && (if !Config.footprint then check (Prop.normalize (Prop.extract_footprint p1)) (Prop.extract_footprint p2) else true) (** {2 Cover: miminum set of pi's whose disjunction is equivalent to true} *) (** check if the pi's in [cases] cover true *) let is_cover cases = let cnt = ref 0 in (* counter for timeout checks, as this function can take exponential time *) let check () = incr cnt; if (!cnt mod 100 = 0) then SymOp.check_wallclock_alarm () in let rec _is_cover acc_pi cases = check (); match cases with | [] -> check_inconsistency_pi acc_pi | (pi, _):: cases' -> IList.for_all (fun a -> _is_cover ((Prop.atom_negate a) :: acc_pi) cases') pi in _is_cover [] cases exception NO_COVER (** Find miminum set of pi's in [cases] whose disjunction covers true *) let find_minimum_pure_cover cases = let cases = let compare (pi1, _) (pi2, _) = int_compare (IList.length pi1) (IList.length pi2) in IList.sort compare cases in let rec grow seen todo = match todo with | [] -> raise NO_COVER | (pi, x):: todo' -> if is_cover ((pi, x):: seen) then (pi, x):: seen else grow ((pi, x):: seen) todo' in let rec _shrink seen todo = match todo with | [] -> seen | (pi, x):: todo' -> if is_cover (seen @ todo') then _shrink seen todo' else _shrink ((pi, x):: seen) todo' in let shrink cases = if IList.length cases > 2 then _shrink [] cases else cases in try Some (shrink (grow [] cases)) with NO_COVER -> None