(* * Copyright (c) 2016 - present Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) open! IStd module F = Format (** Control-flow graph for a single procedure (as opposed to cfg.ml, which represents a cfg for a file). Defines useful wrappers that allows us to do tricks like turn a forward cfg into a backward one, or view a cfg as having a single instruction per node. *) type index = Node_index | Instr_index of int [@@deriving compare] module type Node = sig type t type id val kind : t -> Procdesc.Node.nodekind val id : t -> id val hash : t -> int val loc : t -> Location.t val underlying_node : t -> Procdesc.Node.t val compare_id : id -> id -> int val pp_id : F.formatter -> id -> unit end module DefaultNode = struct type t = Procdesc.Node.t type id = Procdesc.Node.id let kind = Procdesc.Node.get_kind let id = Procdesc.Node.get_id let hash = Procdesc.Node.hash let loc = Procdesc.Node.get_loc let underlying_node t = t let compare_id = Procdesc.Node.compare_id let pp_id = Procdesc.Node.pp_id end module InstrNode = struct type t = Procdesc.Node.t type id = Procdesc.Node.id * index let kind = Procdesc.Node.get_kind let underlying_node t = t let id t = (Procdesc.Node.get_id (underlying_node t), Node_index) let hash node = Hashtbl.hash (id node) let loc t = Procdesc.Node.get_loc t let compare_index = compare_index let compare_id (id1, index1) (id2, index2) = let n = Procdesc.Node.compare_id id1 id2 in if n <> 0 then n else compare_index index1 index2 let pp_id fmt (id, index) = match index with | Node_index -> Procdesc.Node.pp_id fmt id | Instr_index i -> F.fprintf fmt "(%a: %d)" Procdesc.Node.pp_id id i end module type S = sig type t type node include Node with type t := node val instrs : node -> Sil.instr list (** get the instructions from a node *) val instr_ids : node -> (Sil.instr * id option) list (** explode a block into its instructions and an optional id for the instruction. the purpose of this is to specify a policy for fine-grained storage of invariants by the abstract interpreter. the interpreter will forget invariants at program points where the id is None, and remember them otherwise *) val succs : t -> node -> node list val preds : t -> node -> node list (** all predecessors (normal and exceptional) *) val normal_succs : t -> node -> node list (** non-exceptional successors *) val normal_preds : t -> node -> node list (** non-exceptional predecessors *) val exceptional_succs : t -> node -> node list (** exceptional successors *) val exceptional_preds : t -> node -> node list (** exceptional predescessors *) val start_node : t -> node val exit_node : t -> node val proc_desc : t -> Procdesc.t val nodes : t -> node list val from_pdesc : Procdesc.t -> t val is_loop_head : Procdesc.t -> node -> bool end (** Forward CFG with no exceptional control-flow *) module Normal = struct type t = Procdesc.t type node = DefaultNode.t include (DefaultNode : module type of DefaultNode with type t := node) let instrs = Procdesc.Node.get_instrs let instr_ids n = List.map ~f:(fun i -> (i, None)) (instrs n) let normal_succs _ n = Procdesc.Node.get_succs n let normal_preds _ n = Procdesc.Node.get_preds n (* prune away exceptional control flow *) let exceptional_succs _ _ = [] let exceptional_preds _ _ = [] let succs = normal_succs let preds = normal_preds let start_node = Procdesc.get_start_node let exit_node = Procdesc.get_exit_node let proc_desc t = t let nodes = Procdesc.get_nodes let from_pdesc pdesc = pdesc let is_loop_head = Procdesc.is_loop_head end (** Forward CFG with exceptional control-flow *) module Exceptional = struct type node = DefaultNode.t type id_node_map = node list Procdesc.IdMap.t type t = Procdesc.t * id_node_map include (DefaultNode : module type of DefaultNode with type t := node) let exceptional_succs _ n = Procdesc.Node.get_exn n let from_pdesc pdesc = (* map from a node to its exceptional predecessors *) let add_exn_preds exn_preds_acc n = let add_exn_pred exn_preds_acc exn_succ_node = let exn_succ_node_id = Procdesc.Node.get_id exn_succ_node in let existing_exn_preds = try Procdesc.IdMap.find exn_succ_node_id exn_preds_acc with Not_found -> [] in if not (List.mem ~equal:Procdesc.Node.equal existing_exn_preds n) then (* don't add duplicates *) Procdesc.IdMap.add exn_succ_node_id (n :: existing_exn_preds) exn_preds_acc else exn_preds_acc in List.fold ~f:add_exn_pred ~init:exn_preds_acc (exceptional_succs pdesc n) in let exceptional_preds = List.fold ~f:add_exn_preds ~init:Procdesc.IdMap.empty (Procdesc.get_nodes pdesc) in (pdesc, exceptional_preds) let instrs = Procdesc.Node.get_instrs let instr_ids n = List.map ~f:(fun i -> (i, None)) (instrs n) let nodes (t, _) = Procdesc.get_nodes t let normal_succs _ n = Procdesc.Node.get_succs n let normal_preds _ n = Procdesc.Node.get_preds n let exceptional_preds (_, exn_pred_map) n = try Procdesc.IdMap.find (Procdesc.Node.get_id n) exn_pred_map with Not_found -> [] (** get all normal and exceptional successors of [n]. *) let succs t n = let normal_succs = normal_succs t n in match exceptional_succs t n with | [] -> normal_succs | exceptional_succs -> normal_succs @ exceptional_succs |> List.sort ~cmp:Procdesc.Node.compare |> List.remove_consecutive_duplicates ~equal:Procdesc.Node.equal (** get all normal and exceptional predecessors of [n]. *) let preds t n = let normal_preds = normal_preds t n in match exceptional_preds t n with | [] -> normal_preds | exceptional_preds -> normal_preds @ exceptional_preds |> List.sort ~cmp:Procdesc.Node.compare |> List.remove_consecutive_duplicates ~equal:Procdesc.Node.equal let proc_desc (pdesc, _) = pdesc let start_node (pdesc, _) = Procdesc.get_start_node pdesc let exit_node (pdesc, _) = Procdesc.get_exit_node pdesc let is_loop_head = Procdesc.is_loop_head end (** Wrapper that reverses the direction of the CFG *) module Backward (Base : S) = struct include Base let instrs n = List.rev (Base.instrs n) let instr_ids n = List.rev (Base.instr_ids n) let succs = Base.preds let preds = Base.succs let start_node = Base.exit_node let exit_node = Base.start_node let normal_succs = Base.normal_preds let normal_preds = Base.normal_succs let exceptional_succs = Base.exceptional_preds let exceptional_preds = Base.exceptional_succs end module OneInstrPerNode (Base : S with type node = Procdesc.Node.t and type id = Procdesc.Node.id) = struct include (Base : module type of Base with type id := Procdesc.Node.id and type t = Base.t) type id = Base.id * index include (InstrNode : module type of InstrNode with type t := node and type id := id) (* keep the invariants before/after each instruction *) let instr_ids t = List.mapi ~f:(fun i instr -> let id = (Procdesc.Node.get_id t, Instr_index i) in (instr, Some id) ) (instrs t) end module NodeIdMap (CFG : S) = Caml.Map.Make (struct type t = CFG.id let compare = CFG.compare_id end) module NodeIdSet (CFG : S) = Caml.Set.Make (struct type t = CFG.id let compare = CFG.compare_id end)