(* * Copyright (c) 2009 - 2013 Monoidics ltd. * Copyright (c) 2013 - present Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) open! IStd open! PVariant (** mutate the cfg/cg to add dynamic dispatch handling *) let add_dispatch_calls pdesc cg tenv = let sound_dynamic_dispatch = (Config.dynamic_dispatch = `Sound) in let node_add_dispatch_calls caller_pname node = let call_flags_is_dispatch call_flags = (* if sound dispatch is turned off, only consider dispatch for interface calls *) (sound_dynamic_dispatch && call_flags.CallFlags.cf_virtual) || call_flags.CallFlags.cf_interface in let instr_is_dispatch_call = function | Sil.Call (_, _, _, _, call_flags) -> call_flags_is_dispatch call_flags | _ -> false in let has_dispatch_call instrs = List.exists ~f:instr_is_dispatch_call instrs in let replace_dispatch_calls = function | Sil.Call (ret_id, (Exp.Const (Const.Cfun callee_pname) as call_exp), (((_, receiver_typ) :: _) as args), loc, call_flags) as instr when call_flags_is_dispatch call_flags -> (* the frontend should not populate the list of targets *) assert (List.is_empty call_flags.CallFlags.cf_targets); let receiver_typ_no_ptr = match receiver_typ.Typ.desc with | Typ.Tptr (typ', _) -> typ' | _ -> receiver_typ in let sorted_overrides = let overrides = Prover.get_overrides_of tenv receiver_typ_no_ptr callee_pname in List.sort ~cmp:(fun (_, p1) (_, p2) -> Typ.Procname.compare p1 p2) overrides in (match sorted_overrides with | ((_, target_pname) :: _) as all_targets -> let targets_to_add = if sound_dynamic_dispatch then List.map ~f:snd all_targets else (* if sound dispatch is turned off, consider only the first target. we do this because choosing all targets is too expensive for everyday use *) [target_pname] in List.iter ~f:(fun target_pname -> Cg.add_edge cg caller_pname target_pname) targets_to_add; let call_flags' = { call_flags with CallFlags.cf_targets = targets_to_add; } in Sil.Call (ret_id, call_exp, args, loc, call_flags') | [] -> instr) | instr -> instr in let instrs = Procdesc.Node.get_instrs node in if has_dispatch_call instrs then List.map ~f:replace_dispatch_calls instrs |> Procdesc.Node.replace_instrs node in let pname = Procdesc.get_proc_name pdesc in Procdesc.iter_nodes (node_add_dispatch_calls pname) pdesc (** add instructions to perform abstraction *) let add_abstraction_instructions pdesc = let open Procdesc in (* true if there is a succ node s.t.: it is an exit node, or the succ of >1 nodes *) let converging_node node = let is_exit node = match Node.get_kind node with | Node.Exit_node _ -> true | _ -> false in let succ_nodes = Node.get_succs node in if List.exists ~f:is_exit succ_nodes then true else match succ_nodes with | [] -> false | [h] -> List.length (Node.get_preds h) > 1 | _ -> false in let node_requires_abstraction node = match Node.get_kind node with | Node.Start_node _ | Node.Join_node -> false | Node.Exit_node _ | Node.Stmt_node _ | Node.Prune_node _ | Node.Skip_node _ -> converging_node node in let do_node node = let loc = Node.get_last_loc node in if node_requires_abstraction node then Node.append_instrs node [Sil.Abstract loc] in Procdesc.iter_nodes do_node pdesc module BackwardCfg = ProcCfg.OneInstrPerNode(ProcCfg.Backward(ProcCfg.Exceptional)) module LivenessAnalysis = AbstractInterpreter.Make (BackwardCfg) (Liveness.TransferFunctions) module VarDomain = AbstractDomain.FiniteSet(Var.Set) (** computes the non-nullified reaching definitions at the end of each node by building on the results of a liveness analysis to be precise, what we want to compute is: to_nullify := (live_before U non_nullifed_reaching_defs) - live_after non_nullified_reaching_defs := non_nullified_reaching_defs - to_nullify Note that this can't be done with by combining the results of reaching definitions and liveness after the fact, nor can it be done with liveness alone. We will insert nullify instructions for each pvar in to_nullify afer we finish the analysis. Nullify instructions speed up the analysis by enabling it to GC state that will no longer be read. *) module NullifyTransferFunctions = struct (* (reaching non-nullified vars) * (vars to nullify) *) module Domain = AbstractDomain.Pair (VarDomain) (VarDomain) module CFG = ProcCfg.Exceptional type extras = LivenessAnalysis.invariant_map let postprocess ((reaching_defs, _) as astate) node { ProcData.extras; } = let node_id = Procdesc.Node.get_id (CFG.underlying_node node), ProcCfg.Node_index in match LivenessAnalysis.extract_state node_id extras with (* note: because the analysis is backward, post and pre are reversed *) | Some { AbstractInterpreter.post = live_before; pre = live_after; } -> let to_nullify = VarDomain.diff (VarDomain.union live_before reaching_defs) live_after in let reaching_defs' = VarDomain.diff reaching_defs to_nullify in (reaching_defs', to_nullify) | None -> astate let cache_node = ref (Procdesc.Node.dummy None) let cache_instr = ref Sil.skip_instr let last_instr_in_node node = let get_last_instr () = let instrs = CFG.instrs node in match List.rev instrs with | instr :: _ -> instr | [] -> Sil.skip_instr in if phys_equal node !cache_node then !cache_instr else begin let last_instr = get_last_instr () in cache_node := node; cache_instr := last_instr; last_instr end let is_last_instr_in_node instr node = phys_equal (last_instr_in_node node) instr let exec_instr ((active_defs, to_nullify) as astate) extras node instr = let astate' = match instr with | Sil.Load (lhs_id, _, _, _) -> VarDomain.add (Var.of_id lhs_id) active_defs, to_nullify | Sil.Call (lhs_id, _, _, _, _) -> let active_defs' = Option.value_map ~f:(fun (id, _) -> VarDomain.add (Var.of_id id) active_defs) ~default:active_defs lhs_id in active_defs', to_nullify | Sil.Store (Exp.Lvar lhs_pvar, _, _, _) -> VarDomain.add (Var.of_pvar lhs_pvar) active_defs, to_nullify | Sil.Store _ | Prune _ | Declare_locals _ | Remove_temps _ | Abstract _ -> astate | Sil.Nullify _ -> failwith "Should not add nullify instructions before running nullify analysis!" in if is_last_instr_in_node instr node then postprocess astate' node extras else astate' end module NullifyAnalysis = AbstractInterpreter.MakeNoCFG (Scheduler.ReversePostorder (ProcCfg.Exceptional)) (NullifyTransferFunctions) let add_nullify_instrs pdesc tenv liveness_inv_map = let address_taken_vars = if Typ.Procname.is_java (Procdesc.get_proc_name pdesc) then AddressTaken.Domain.empty (* can't take the address of a variable in Java *) else let initial = AddressTaken.Domain.empty in match AddressTaken.Analyzer.compute_post (ProcData.make_default pdesc tenv) ~initial with | Some post -> post | None -> AddressTaken.Domain.empty in let nullify_proc_cfg = ProcCfg.Exceptional.from_pdesc pdesc in let nullify_proc_data = ProcData.make pdesc tenv liveness_inv_map in let initial = VarDomain.empty, VarDomain.empty in let nullify_inv_map = NullifyAnalysis.exec_cfg nullify_proc_cfg nullify_proc_data ~initial ~debug:false in (* only nullify pvars that are local; don't nullify those that can escape *) let is_local pvar = not (Pvar.is_return pvar || Pvar.is_global pvar) in let node_add_nullify_instructions node pvars = let loc = Procdesc.Node.get_last_loc node in let nullify_instrs = List.filter ~f:is_local pvars |> List.map ~f:(fun pvar -> Sil.Nullify (pvar, loc)) in if nullify_instrs <> [] then Procdesc.Node.append_instrs node (List.rev nullify_instrs) in let node_add_removetmps_instructions node ids = if ids <> [] then let loc = Procdesc.Node.get_last_loc node in Procdesc.Node.append_instrs node [Sil.Remove_temps (List.rev ids, loc)] in List.iter ~f:(fun node -> match NullifyAnalysis.extract_post (ProcCfg.Exceptional.id node) nullify_inv_map with | Some (_, to_nullify) -> let pvars_to_nullify, ids_to_remove = Var.Set.fold (fun var (pvars_acc, ids_acc) -> match Var.to_exp var with (* we nullify all address taken variables at the end of the procedure *) | Exp.Lvar pvar when not (AddressTaken.Domain.mem pvar address_taken_vars) -> pvar :: pvars_acc, ids_acc | Exp.Var id -> pvars_acc, id :: ids_acc | _ -> pvars_acc, ids_acc) to_nullify ([], []) in node_add_removetmps_instructions node ids_to_remove; node_add_nullify_instructions node pvars_to_nullify | None -> ()) (ProcCfg.Exceptional.nodes nullify_proc_cfg); (* nullify all address taken variables *) if not (AddressTaken.Domain.is_empty address_taken_vars) then let exit_node = ProcCfg.Exceptional.exit_node nullify_proc_cfg in node_add_nullify_instructions exit_node (AddressTaken.Domain.elements address_taken_vars) module ExceptionalOneInstrPerNodeCfg = ProcCfg.OneInstrPerNode(ProcCfg.Exceptional) module CopyProp = AbstractInterpreter.Make (ExceptionalOneInstrPerNodeCfg) (CopyPropagation.TransferFunctions) let do_copy_propagation pdesc tenv = let proc_cfg = ExceptionalOneInstrPerNodeCfg.from_pdesc pdesc in let initial = CopyPropagation.Domain.empty in let copy_prop_inv_map = CopyProp.exec_cfg proc_cfg (ProcData.make_default pdesc tenv) ~initial ~debug:false in (* [var_map] represents a chain of variable. copies v_0 -> v_1 ... -> v_n. starting from some ident v_j, we want to walk backward through the chain to find the lowest v_i that is also an ident. *) let id_sub var_map id = (* [last_id] is the highest identifier in the chain that we've seen so far *) let rec id_sub_inner var_map var last_id = try let var' = CopyPropagation.Domain.find var var_map in let last_id' = match var' with | Var.LogicalVar id -> id | _ -> last_id in id_sub_inner var_map var' last_id' with Not_found -> Exp.Var last_id in id_sub_inner var_map (Var.of_id id) id in (* perform copy-propagation on each instruction in [node] *) let rev_transform_node_instrs node = List.fold ~f:(fun (instrs, changed) (instr, id_opt) -> match id_opt with | Some id -> begin match CopyProp.extract_pre id copy_prop_inv_map with | Some pre when not (CopyPropagation.Domain.is_empty pre) -> let instr' = Sil.instr_sub_ids ~sub_id_binders:false (id_sub pre) instr in instr' :: instrs, changed || not (phys_equal instr' instr) | _ -> instr :: instrs, changed end | None -> instr :: instrs, changed) ~init:([], false) (ExceptionalOneInstrPerNodeCfg.instr_ids node) in List.iter ~f:(fun node -> let instrs, changed = rev_transform_node_instrs node in if changed then Procdesc.Node.replace_instrs node (List.rev instrs)) (Procdesc.get_nodes pdesc) let do_liveness pdesc tenv = let liveness_proc_cfg = BackwardCfg.from_pdesc pdesc in let initial = Liveness.Domain.empty in let liveness_inv_map = LivenessAnalysis.exec_cfg liveness_proc_cfg (ProcData.make_default pdesc tenv) ~initial ~debug:false in if Config.copy_propagation then do_copy_propagation pdesc tenv; add_nullify_instrs pdesc tenv liveness_inv_map; Procdesc.signal_did_preanalysis pdesc let do_abstraction pdesc = add_abstraction_instructions pdesc; Procdesc.signal_did_preanalysis pdesc let do_dynamic_dispatch pdesc cg tenv = let pname = Procdesc.get_proc_name pdesc in if Typ.Procname.is_java pname && (Config.dynamic_dispatch = `Interface || Config.dynamic_dispatch = `Sound) then add_dispatch_calls pdesc cg tenv; Procdesc.signal_did_preanalysis pdesc