(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (* Define SSA form and the concept of variable liveness, and then show how SSA * simplifies it *) open HolKernel boolLib bossLib Parse; open pred_setTheory listTheory rich_listTheory pairTheory arithmeticTheory; open alistTheory set_relationTheory; open settingsTheory miscTheory llvmTheory llvm_propTheory; new_theory "llvm_ssa"; numLib.prefer_num (); (* ----- The syntactic things we need to know about a program, just for this file ---- *) Definition loc_prog_ok_def: loc_prog_ok p ⇔ (∀fname dec bname block. alookup p fname = Some dec ∧ alookup dec.blocks bname = Some block ⇒ block.body ≠ [] ∧ terminator (last block.body) ∧ every (λi. ~terminator i) (front block.body)) ∧ (∀fname dec. alookup p fname = Some dec ⇒ every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ∧ (every (\(fname, dec). all_distinct (map fst dec.blocks)) p) End (* ----- Static paths through a program ----- *) Definition inc_pc_def: inc_pc ip = ip with i := inc_bip ip.i End (* The set of program counters the given instruction and starting point can * immediately reach, within a function *) Definition instr_next_ips_def: (instr_next_ips (Ret _) ip = {}) ∧ (instr_next_ips (Br _ l1 l2) ip = { <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧ (instr_next_ips (Invoke _ _ _ _ l1 l2) ip = { <| f := ip.f; b := Some l; i := Phi_ip ip.b |> | l | l ∈ {l1; l2} }) ∧ (instr_next_ips Unreachable ip = {}) ∧ (instr_next_ips (Exit _) ip = {}) ∧ (instr_next_ips (Sub _ _ _ _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Extractvalue _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Insertvalue _ _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Alloca _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Load _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Store _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Gep _ _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Cast _ _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Icmp _ _ _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Call _ _ _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Cxa_allocate_exn _ _) ip = { inc_pc ip }) ∧ (* TODO: revisit throw when dealing with exceptions *) (instr_next_ips (Cxa_throw _ _ _) ip = { }) ∧ (instr_next_ips (Cxa_begin_catch _ _) ip = { inc_pc ip }) ∧ (instr_next_ips (Cxa_end_catch) ip = { inc_pc ip }) ∧ (instr_next_ips (Cxa_get_exception_ptr _ _) ip = { inc_pc ip }) End Inductive next_ips: (∀prog ip i l i2. get_instr prog ip (Inl i) ∧ l ∈ instr_next_ips i ip ∧ get_instr prog l i2 ⇒ next_ips prog ip l) ∧ (∀prog ip from_l phis i2. get_instr prog ip (Inr (from_l, phis)) ∧ get_instr prog (inc_pc ip) i2 ⇒ next_ips prog ip (inc_pc ip)) End (* The path is a list of program counters that represent a statically feasible * path through a function *) Inductive good_path: (∀prog. good_path prog []) ∧ (∀prog ip i. get_instr prog ip i ⇒ good_path prog [ip]) ∧ (∀prog path ip1 ip2. ip2 ∈ next_ips prog ip1 ∧ good_path prog (ip2::path) ⇒ good_path prog (ip1::ip2::path)) End Theorem next_ips_same_func: ∀prog ip1 ip2. ip2 ∈ next_ips prog ip1 ⇒ ip1.f = ip2.f Proof rw [next_ips_cases, IN_DEF, get_instr_cases, inc_pc_def, inc_bip_def] >> rw [] >> Cases_on `el idx b.body` >> fs [instr_next_ips_def, inc_pc_def, inc_bip_def] QED Theorem good_path_same_func: ∀prog path. good_path prog path ⇒ ∀ip1 ip2. mem ip1 path ∧ mem ip2 path ⇒ ip1.f = ip2.f Proof ho_match_mp_tac good_path_ind >> rw [] >> metis_tac [next_ips_same_func] QED Theorem good_path_prefix: ∀prog path path'. good_path prog path ∧ path' ≼ path ⇒ good_path prog path' Proof Induct_on `path'` >> rw [] >- simp [Once good_path_cases] >> pop_assum mp_tac >> CASE_TAC >> rw [] >> qpat_x_assum `good_path _ _` mp_tac >> simp [Once good_path_cases] >> rw [] >> fs [] >- (simp [Once good_path_cases] >> metis_tac []) >> first_x_assum drule >> rw [] >> simp [Once good_path_cases] >> Cases_on `path'` >> fs [next_ips_cases, IN_DEF] >> metis_tac [] QED Theorem good_path_append: !prog p1 p2. good_path prog (p1++p2) ⇔ good_path prog p1 ∧ good_path prog p2 ∧ (p1 ≠ [] ∧ p2 ≠ [] ⇒ HD p2 ∈ next_ips prog (last p1)) Proof Induct_on `p1` >> rw [] >- metis_tac [good_path_rules] >> Cases_on `p1` >> Cases_on `p2` >> rw [] >- metis_tac [good_path_rules] >- ( simp [Once good_path_cases] >> metis_tac [good_path_rules, next_ips_cases, IN_DEF]) >- metis_tac [good_path_rules] >> rename1 `ip1::ip2::(ips1++ip3::ips2)` >> first_x_assum (qspecl_then [`prog`, `[ip3]++ips2`] mp_tac) >> rw [] >> simp [Once good_path_cases, LAST_DEF] >> rw [] >> eq_tac >> rw [] >- metis_tac [good_path_rules] >- (qpat_x_assum `good_path _ [_;_]` mp_tac >> simp [Once good_path_cases]) >- metis_tac [good_path_rules, next_ips_cases, IN_DEF] >- metis_tac [good_path_rules] >- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases]) >- (qpat_x_assum `good_path _ (ip1::ip2::ips1)` mp_tac >> simp [Once good_path_cases]) QED (* ----- Helper functions to get registers out of instructions ----- *) Definition arg_to_regs_def: (arg_to_regs (Constant _) = {}) ∧ (arg_to_regs (Variable r) = {r}) End (* The registers that an instruction uses *) Definition instr_uses_def: (instr_uses (Ret (_, a)) = arg_to_regs a) ∧ (instr_uses (Br a _ _) = arg_to_regs a) ∧ (instr_uses (Invoke _ _ a targs _ _) = arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧ (instr_uses Unreachable = {}) ∧ (instr_uses (Exit a) = arg_to_regs a) ∧ (instr_uses (Sub _ _ _ _ a1 a2) = arg_to_regs a1 ∪ arg_to_regs a2) ∧ (instr_uses (Extractvalue _ (_, a) _) = arg_to_regs a) ∧ (instr_uses (Insertvalue _ (_, a1) (_, a2) _) = arg_to_regs a1 ∪ arg_to_regs a2) ∧ (instr_uses (Alloca _ _ (_, a)) = arg_to_regs a) ∧ (instr_uses (Load _ _ (_, a)) = arg_to_regs a) ∧ (instr_uses (Store (_, a1) (_, a2)) = arg_to_regs a1 ∪ arg_to_regs a2) ∧ (instr_uses (Gep _ _ (_, a) targs) = arg_to_regs a ∪ BIGUNION (set (map (arg_to_regs o snd) targs))) ∧ (instr_uses (Cast _ _ (_, a) _) = arg_to_regs a) ∧ (instr_uses (Icmp _ _ _ a1 a2) = arg_to_regs a1 ∪ arg_to_regs a2) ∧ (instr_uses (Call _ _ _ targs) = BIGUNION (set (map (arg_to_regs o snd) targs))) ∧ (instr_uses (Cxa_allocate_exn _ a) = arg_to_regs a) ∧ (instr_uses (Cxa_throw a1 a2 a3) = arg_to_regs a1 ∪ arg_to_regs a2 ∪ arg_to_regs a3) ∧ (instr_uses (Cxa_begin_catch _ a) = arg_to_regs a) ∧ (instr_uses (Cxa_end_catch) = { }) ∧ (instr_uses (Cxa_get_exception_ptr _ a) = arg_to_regs a) End Definition phi_uses_def: phi_uses from_l (Phi _ _ entries) = case alookup entries from_l of | None => {} | Some a => arg_to_regs a End Inductive uses: (∀prog ip i r. get_instr prog ip (Inl i) ∧ r ∈ instr_uses i ⇒ uses prog ip r) ∧ (∀prog ip from_l phis r. get_instr prog ip (Inr (from_l, phis)) ∧ r ∈ BIGUNION (set (map (phi_uses from_l) phis)) ⇒ uses prog ip r) End Definition cidx_to_num_def: (cidx_to_num (IntC _ n) = Num (ABS n)) ∧ (cidx_to_num _ = 0) End (* Convert index lists as for GEP into number lists, for the purpose of * calculating types. Everything goes to 0 but for positive integer constants, * because those things can't be used to index anything but arrays, and the type * for the array contents doesn't depend on the index's value. *) Definition idx_to_num_def: (idx_to_num (_, (Constant (IntC _ n))) = Num (ABS n)) ∧ (idx_to_num (_, _) = 0) End (* The registers that an instruction assigns *) Definition instr_assigns_def: (instr_assigns (Invoke r t _ _ _ _) = {(r,t)}) ∧ (instr_assigns (Sub r _ _ t _ _) = {(r,t)}) ∧ (instr_assigns (Extractvalue r (t,_) idx) = {(r,THE (extract_type t (map cidx_to_num idx)))}) ∧ (instr_assigns (Insertvalue r (t,_) _ _) = {(r, t)}) ∧ (instr_assigns (Alloca r t _) = {(r,PtrT t)}) ∧ (instr_assigns (Load r t _) = {(r,t)}) ∧ (instr_assigns (Gep r t _ idx) = {(r,PtrT (THE (extract_type t (map idx_to_num idx))))}) ∧ (instr_assigns (Cast r _ _ t) = {(r,t)}) ∧ (instr_assigns (Icmp r _ _ _ _) = {(r, IntT W1)}) ∧ (instr_assigns (Call r t _ _) = {(r,t)}) ∧ (instr_assigns (Cxa_allocate_exn r _) = {(r,ARB)}) ∧ (instr_assigns (Cxa_begin_catch r _) = {(r,ARB)}) ∧ (instr_assigns (Cxa_get_exception_ptr r _) = {(r,ARB)}) ∧ (instr_assigns _ = {}) End Definition phi_assigns_def: phi_assigns (Phi r t _) = (r,t) End Inductive assigns: (∀prog ip i r. get_instr prog ip (Inl i) ∧ r ∈ instr_assigns i ⇒ assigns prog ip r) ∧ (∀prog ip from_l phis r. get_instr prog ip (Inr (from_l, phis)) ∧ r ∈ set (map phi_assigns phis) ⇒ assigns prog ip r) End (* ----- SSA form ----- *) Definition entry_ip_def: entry_ip fname = <| f := fname; b := None; i := Offset 0 |> End (* Equivalent instruction pointers, since we don't want to distinguish pointers * to headers that have different from labels *) Definition ip_equiv_def: ip_equiv ip1 ip2 ⇔ ip1.f = ip2.f ∧ ip1.b = ip2.b ∧ (ip1.i ≠ ip2.i ⇒ ∃l1 l2. ip1.i = Phi_ip l1 ∧ ip2.i = Phi_ip l2) End Definition reachable_def: reachable prog ip ⇔ ∃path. good_path prog (entry_ip ip.f :: path) ∧ ip_equiv (last (entry_ip ip.f :: path)) ip End (* To get to ip2 from the entry, you must go through ip1 *) Definition dominates_def: dominates prog ip1 ip2 ⇔ ∀path. good_path prog (entry_ip ip2.f :: path) ∧ ip_equiv (last (entry_ip ip2.f :: path)) ip2 ⇒ ∃ip1'. ip_equiv ip1 ip1' ∧ mem ip1' (front (entry_ip ip2.f :: path)) End Definition is_ssa_def: is_ssa prog ⇔ (* Operate function by function *) (∀fname. (* No register is assigned in two different instructions *) (∀r ip1 ip2. r ∈ image fst (assigns prog ip1) ∧ r ∈ image fst (assigns prog ip2) ∧ ip1.f = fname ∧ ip2.f = fname ⇒ ip_equiv ip1 ip2)) ∧ (* Each use is dominated by its assignment *) (∀ip1 r. r ∈ uses prog ip1 ⇒ ∃ip2. ip2.f = ip1.f ∧ r ∈ image fst (assigns prog ip2) ∧ dominates prog ip2 ip1) ∧ (* All of the blocks are reachable. Otherwise, we could have dead code that * violates SSA, and this will wreck our treatment of a function body as a * list of blocks in dominator tree order *) (∀ip i. get_instr prog ip i ⇒ reachable prog ip) End Theorem ip_equiv_sym: ∀ip1 ip2. ip_equiv ip1 ip2 ⇔ ip_equiv ip2 ip1 Proof rw [ip_equiv_def] >> metis_tac [] QED Theorem ip_equiv_refl: ∀ip. ip_equiv ip ip Proof rw [ip_equiv_def] QED Theorem ip_equiv_trans: ∀ip1 ip2 ip3. ip_equiv ip1 ip2 ∧ ip_equiv ip2 ip3 ⇒ ip_equiv ip1 ip3 Proof rw [ip_equiv_def] >> metis_tac [] QED Theorem ip_equiv_assigns: ∀prog ip1 ip2 rt. ip_equiv ip1 ip2 ∧ rt ∈ assigns prog ip1 ⇒ rt ∈ assigns prog ip2 Proof rw [ip_equiv_def, assigns_cases, IN_DEF] >> Cases_on `ip1 = ip2` >> rw [] >- metis_tac [] >- (fs [pc_component_equality] >> fs [get_instr_cases] >> fs []) >- metis_tac [] >- ( fs [pc_component_equality] >> fs [get_instr_cases, inc_pc_def, inc_bip_def, PULL_EXISTS] >> rw [] >> rfs [inc_bip_def] >> metis_tac [optionTheory.SOME_11]) QED Theorem ip_equiv_next: ∀prog ip1 ip2 ip3. ip_equiv ip1 ip2 ∧ ip3 ∈ next_ips prog ip1 ⇒ ip3 ∈ next_ips prog ip2 Proof rw [ip_equiv_def, next_ips_cases, IN_DEF] >> Cases_on `ip1 = ip2` >> rw [] >- metis_tac [] >- (fs [pc_component_equality] >> fs [get_instr_cases] >> fs []) >- metis_tac [] >- ( fs [pc_component_equality] >> fs [get_instr_cases, inc_pc_def, inc_bip_def, PULL_EXISTS] >> rw [] >> rfs [inc_bip_def] >> metis_tac [optionTheory.SOME_11]) QED Theorem ip_equiv_dominates: ∀prog ip1 ip2 ip3. dominates prog ip1 ip2 ∧ ip_equiv ip2 ip3 ⇒ dominates prog ip1 ip3 Proof rw [dominates_def] >> metis_tac [ip_equiv_def] QED Theorem ip_equiv_dominates2: ∀prog ip1 ip2 ip3. dominates prog ip1 ip2 ∧ ip_equiv ip1 ip3 ⇒ dominates prog ip3 ip2 Proof rw [dominates_def] >> metis_tac [ip_equiv_def] QED Theorem ip_equiv_next_ips: ∀p i ip1 ip2. ip_equiv ip1 ip2 ∧ i ∈ next_ips p ip1 ⇒ i ∈ next_ips p ip2 Proof rw [ip_equiv_def] >> Cases_on `ip1.i = ip2.i` >- metis_tac [pc_component_equality] >> fs [] >> rw [] >> rfs [] >> fs [next_ips_cases, IN_DEF, inc_pc_def, inc_bip_def] >> fs [get_instr_cases] >> rw [] >> fs [] >> rw [pc_component_equality, PULL_EXISTS] >> rfs [] >> rw [] >> fs [inc_bip_def] QED Theorem dominates_trans: ∀prog ip1 ip2 ip3. dominates prog ip1 ip2 ∧ dominates prog ip2 ip3 ⇒ dominates prog ip1 ip3 Proof rw [dominates_def] >> simp [FRONT_DEF] >> rw [] >- (first_x_assum (qspec_then `[]` mp_tac) >> rw []) >> first_x_assum drule >> rw [] >> qpat_x_assum `mem _ (front _)` mp_tac >> simp [Once MEM_EL] >> rw [] >> fs [EL_FRONT] >> first_x_assum (qspec_then `take n path` mp_tac) >> simp [LAST_DEF] >> simp [Once ip_equiv_sym] >> rw [] >> fs [entry_ip_def] >- ( fs [Once good_path_cases, ip_equiv_def] >> rw [] >> fs [next_ips_cases, IN_DEF] >> metis_tac []) >- ( fs [Once good_path_cases, ip_equiv_def] >> rw [] >> fs [next_ips_cases, IN_DEF] >> metis_tac []) >> rfs [EL_CONS] >> `?m. n = Suc m` by (Cases_on `n` >> rw []) >> rw [] >> rfs [] >> `(el m path).f = (last (<|f := ip3.f; b := None; i := Offset 0|> ::path)).f` by ( irule good_path_same_func >> qexists_tac `<| f:= ip3.f; b := NONE; i := Offset 0|> :: path` >> qexists_tac `prog` >> conj_tac >- rw [EL_MEM] >> metis_tac [MEM_LAST]) >> `(el m path).f = ip3.f` by metis_tac [ip_equiv_def] >> fs [] >> qpat_x_assum `_ ⇒ _` mp_tac >> impl_tac >- ( irule good_path_prefix >> HINT_EXISTS_TAC >> rw [] >> metis_tac [take_is_prefix, ip_equiv_def]) >> rw [] >> drule MEM_FRONT >> rw [] >- (qexists_tac `<|f := ip3.f; b := None; i := Offset 0|>` >> fs [ip_equiv_def]) >> fs [MEM_EL, LENGTH_FRONT] >> rfs [EL_TAKE] >> rw [] >> HINT_EXISTS_TAC >> rw [] >> disj2_tac >> qexists_tac `n'` >> rw [] >> irule (GSYM EL_FRONT) >> rw [NULL_EQ, LENGTH_FRONT] QED Theorem dominates_unreachable: ∀prog ip1 ip2. ¬reachable prog ip2 ⇒ dominates prog ip1 ip2 Proof rw [dominates_def, reachable_def] >> metis_tac [] QED Theorem dominates_antisym_lem: ∀prog ip1 ip2. dominates prog ip1 ip2 ∧ dominates prog ip2 ip1 ⇒ ¬reachable prog ip1 Proof rw [dominates_def, reachable_def] >> CCONTR_TAC >> fs [] >> Cases_on `ip_equiv ip1 (entry_ip ip1.f)` >> fs [] >- ( first_x_assum (qspec_then `[]` mp_tac) >> rw [] >> fs [Once good_path_cases, IN_DEF, next_ips_cases] >> metis_tac [ip_equiv_sym]) >> `path ≠ []` by (Cases_on `path` >> fs [] >> metis_tac [ip_equiv_sym]) >> `(OLEAST n. n < length path ∧ ip_equiv (el n path) ip1) ≠ None` by ( rw [whileTheory.OLEAST_EQ_NONE] >> qexists_tac `PRE (length path)` >> rw [] >> fs [LAST_DEF, LAST_EL] >> Cases_on `path` >> fs []) >> qabbrev_tac `path1 = splitAtPki (\n ip. ip_equiv ip ip1) (\x y. x++[HD y]) path` >> first_x_assum (qspec_then `path1` mp_tac) >> simp [] >> `IS_PREFIX path path1` by ( unabbrev_all_tac >> rw [splitAtPki_EQN] >> CASE_TAC >> rw [] >> fs [whileTheory.OLEAST_EQ_SOME] >> rw [GSYM SNOC_APPEND, SNOC_EL_TAKE, HD_DROP] >> metis_tac [take_is_prefix]) >> conj_asm1_tac >> rw [] >- (irule good_path_prefix >> HINT_EXISTS_TAC >> rw []) >- ( unabbrev_all_tac >> rw [splitAtPki_EQN] >> CASE_TAC >> rw [] >> fs [whileTheory.OLEAST_EQ_SOME] >> rw [LAST_DEF, HD_DROP]) >> `path1 ≠ []` by (fs [Abbr `path1`, splitAtPki_EQN] >> CASE_TAC >> rw []) >> simp [GSYM SNOC_APPEND, FRONT_SNOC, FRONT_DEF] >> CCONTR_TAC >> fs [MEM_EL] >- ( first_x_assum (qspec_then `[]` mp_tac) >> fs [entry_ip_def, Once good_path_cases, IN_DEF, next_ips_cases] >> fs [ip_equiv_def] >> metis_tac []) >> rw [] >> rfs [] >> rename [`n1 < length (front _)`, `ip_equiv (el n _) _`, `ip_equiv _ (el n1 (front _))`] >> first_x_assum (qspec_then `take (Suc n1) path1` mp_tac) >> rw [] >- ( irule good_path_prefix >> HINT_EXISTS_TAC >> rw [entry_ip_def] >- ( `(el n1 (front path1)).f = (entry_ip ip1.f).f` suffices_by fs [ip_equiv_def, entry_ip_def] >> irule good_path_same_func >> qexists_tac `entry_ip ip1.f::path1` >> qexists_tac `prog` >> rw [EL_MEM, entry_ip_def] >> rw [MEM_EL] >> disj2_tac >> qexists_tac `n1` >> rw [] >> rfs [LENGTH_FRONT] >> irule EL_FRONT >> rw [NULL_EQ, LENGTH_FRONT]) >> metis_tac [IS_PREFIX_APPEND3, take_is_prefix, IS_PREFIX_TRANS]) >- ( rfs [LENGTH_FRONT] >> rw [LAST_DEF] >> metis_tac [EL_FRONT, NULL_EQ, ip_equiv_sym, LENGTH_FRONT]) >> rw [METIS_PROVE [] ``~x ∨ y ⇔ (x ⇒ y)``] >> simp [EL_FRONT] >> rfs [LENGTH_TAKE, LENGTH_FRONT] >> rename [`n2 < Suc _`] >> Cases_on `¬(0 < n2)` >> rw [EL_CONS] >- (fs [entry_ip_def] >> CCONTR_TAC >> fs [] >> fs [ip_equiv_def]) >> fs [EL_TAKE, Abbr `path1`, splitAtPki_EQN] >> CASE_TAC >> rw [] >> fs [] >- metis_tac [] >> fs [whileTheory.OLEAST_EQ_SOME] >> rfs [LENGTH_TAKE] >> `PRE n2 < x` by decide_tac >> first_x_assum drule >> rfs [HD_DROP, LAST_DEF] >> rw [EL_TAKE, EL_APPEND_EQN] >> metis_tac [ip_equiv_sym] QED Theorem dominates_antisym: ∀prog ip1 ip2. reachable prog ip1 ∧ dominates prog ip1 ip2 ⇒ ¬dominates prog ip2 ip1 Proof metis_tac [dominates_antisym_lem] QED Theorem dominates_irrefl: ∀prog ip. reachable prog ip ⇒ ¬dominates prog ip ip Proof metis_tac [dominates_antisym] QED Definition bip_less_def: (bip_less (Phi_ip _) (Offset _) ⇔ T) ∧ (bip_less (Offset m) (Offset n) ⇔ m < n) ∧ (bip_less _ _ ⇔ F) End Theorem bip_less_tri: ∀ip1 ip2. ip1.f = ip2.f ∧ ip1.b = ip2.b ⇒ bip_less ip1.i ip2.i ∨ bip_less ip2.i ip1.i ∨ ip_equiv ip1 ip2 Proof rw [] >> Cases_on `ip1.i` >> Cases_on `ip2.i`>> rw [bip_less_def, ip_equiv_def] QED Theorem ip_equiv_less: ∀ip1 ip2 ip3. ip_equiv ip2 ip3 ∧ bip_less ip1.i ip2.i ⇒ bip_less ip1.i ip3.i Proof rw [ip_equiv_def] >> Cases_on `ip1.i` >> Cases_on `ip2.i` >> Cases_on `ip3.i` >> fs [bip_less_def] QED Theorem ip_equiv_less2: ∀ip1 ip2 ip3. ip_equiv ip2 ip3 ∧ bip_less ip2.i ip1.i ⇒ bip_less ip3.i ip1.i Proof rw [ip_equiv_def] >> Cases_on `ip1.i` >> Cases_on `ip2.i` >> Cases_on `ip3.i` >> fs [bip_less_def] QED Triviality front_cons_snoc: ∀x y z. front (x::SNOC y z) = x::z Proof Induct_on `z` >> fs [SNOC_APPEND] QED Triviality last_cons_snoc: ∀x y z. last (x::SNOC y z) = y Proof Induct_on `z` >> fs [] QED Triviality prefix_snoc: ∀x y. x ≼ SNOC y x Proof Induct_on `x` >> fs [] QED Triviality bip_lem: bip_less i1 i2 ⇒ ?n. i2 = Offset n Proof Cases_on `i1` >> Cases_on `i2` >> fs [bip_less_def] QED Theorem next_ips_prev_entry: ∀prog ip1 ip2 ip3 f. (∀fname dec. alookup prog fname = Some dec ⇒ every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ⇒ ip3 ∈ next_ips prog (entry_ip f) ∧ (∃i. get_instr prog ip1 i) ∧ ip1.f = ip2.f ∧ ip1.b = ip2.b ∧ bip_less ip1.i ip2.i ∧ ip_equiv ip3 ip2 ⇒ ip1 = entry_ip f Proof rw [IN_DEF, next_ips_cases, get_instr_cases, entry_ip_def, ip_equiv_def] >> rw [] >> Cases_on `HD b.body` >> fs [instr_next_ips_def] >> rw [] >> fs [inc_pc_def, inc_bip_def] >> rw [] >> fs [] >> rw [pc_component_equality] >> rfs [bip_less_def] >> rw [] >> res_tac >> fs [EVERY_MEM] >> metis_tac [blockHeader_distinct, FST, ALOOKUP_MEM, SND, EVERY_MEM, bip_lem, bip_distinct] QED Theorem next_ips_prev_less: ip2 ∈ next_ips prog ip3 ∧ (∃i. get_instr prog ip1 i) ∧ ip1.f = ip2.f ∧ ip1.b = ip2.b ∧ ~ip_equiv ip1 ip3 ∧ bip_less ip1.i ip2.i ⇒ ip3.b = ip2.b ∧ bip_less ip1.i ip3.i Proof rw [IN_DEF, next_ips_cases, get_instr_cases, ip_equiv_def] >> rw [] >> Cases_on `el idx b.body` >> fs [instr_next_ips_def] >> rw [] >> fs [inc_pc_def, inc_bip_def] >> rw [bip_less_def] >> imp_res_tac bip_lem >> fs [] >> rfs [bip_less_def, inc_bip_def] >> rw [] >> fs [pc_component_equality] >> rfs [] QED Theorem good_path_end_step: good_path prog (entry_ip f::SNOC ip2 (p1 ++ [ip3])) ⇒ ip2 ∈ next_ips prog ip3 Proof rw [Once good_path_cases] >> qpat_x_assum `_ = _` (mp_tac o GSYM) >> rw [] >> fs [good_path_append] >> Cases_on `p1` >> fs [Once good_path_cases] QED Theorem same_block_dominates: ∀prog. (∀fname dec. alookup prog fname = Some dec ⇒ every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ⇒ ∀ip1 ip2. ip1.f = ip2.f ∧ ip1.b = ip2.b ∧ (∃i. get_instr prog ip1 i) ⇒ bip_less ip1.i ip2.i ⇒ dominates prog ip1 ip2 Proof ntac 2 strip_tac >> simp [dominates_def, PULL_FORALL] >> ntac 3 gen_tac >> Q.ID_SPEC_TAC `ip2` >> Q.ID_SPEC_TAC `path` >> ho_match_mp_tac SNOC_INDUCT >> rw [] >- ( simp [Once good_path_cases, ip_equiv_def] >> Cases_on `ip1.i` >> Cases_on `ip2.i` >> fs [bip_less_def] >> rw [entry_ip_def, pc_component_equality] >> CCONTR_TAC >> fs [] >> rw [] >> fs [get_instr_cases] >> rw [] >> first_x_assum drule >> simp [EXISTS_MEM] >> qexists_tac `(ip1.b, b)` >> rw [] >> metis_tac [optionTheory.SOME_11, ALOOKUP_MEM]) >> simp [front_cons_snoc] >> fs [last_cons_snoc] >> rw [] >> `good_path prog (entry_ip ip2.f::path)` by (irule good_path_prefix >> HINT_EXISTS_TAC >> rw [prefix_snoc]) >> Cases_on `path = []` >> rw [] >- ( fs [Once good_path_cases] >> fs [Once good_path_cases] >> metis_tac [next_ips_prev_entry, ip_equiv_refl]) >> `?p1 ip3. path = p1 ++ [ip3]` by metis_tac [SNOC_CASES, SNOC_APPEND] >> fs [] >> rw [] >> rename1 `ip_equiv ip2' _` >> `ip3.f = ip2'.f` by ( irule good_path_same_func >> qexists_tac `entry_ip ip2.f::SNOC ip2' (p1 ++ [ip3])` >> rw [] >> metis_tac []) >> Cases_on `ip_equiv ip1 ip3` >> rw [] >- metis_tac [] >> `ip3.b = ip2'.b ∧ bip_less ip1.i ip3.i` by ( drule good_path_end_step >> strip_tac >> irule next_ips_prev_less >> fs [] >> rw [] >- fs [ip_equiv_def] >- fs [ip_equiv_def] >- metis_tac [] >- metis_tac [ip_equiv_less, ip_equiv_sym]) >> first_x_assum (qspec_then `ip3` mp_tac) >> simp [] >> impl_tac >- metis_tac [ip_equiv_def] >> impl_tac >> rw [] >- fs [ip_equiv_def] >- rw [LAST_DEF, ip_equiv_def] >> qexists_tac `ip1'` >> rw [] >> drule MEM_FRONT >> fs [ip_equiv_def] QED Theorem next_ips_still_leq: ip2 ∈ next_ips prog ip1 ∧ ip2.f = ip1.f ∧ ip2.f = ip3.f ∧ ip1.b = ip3.b ∧ (∀inst. get_instr prog ip1 (Inl inst) ⇒ ~terminator inst) ∧ bip_less ip1.i ip3.i ⇒ bip_less ip2.i ip3.i ∧ ip2.b = ip1.b ∨ ip2 = ip3 Proof rw [IN_DEF, next_ips_cases] >> rfs [] >- ( fs [get_instr_cases] >> rw [] >> rfs [] >> rw [] >> fs [] >> Cases_on `el idx b.body` >> fs [instr_next_ips_def] >> rw [] >> fs [inc_pc_def] >> rw [] >> rfs [inc_bip_def] >> Cases_on `ip3.i` >> fs [bip_less_def, pc_component_equality] >> rw [] >> fs [terminator_def]) >- ( fs [get_instr_cases, inc_pc_def] >> rw [] >> rfs [inc_bip_def] >> rw [pc_component_equality] >> Cases_on `ip3.i` >> fs [bip_less_def]) QED Theorem good_path_find_ip: ∀prog path. good_path prog path ⇒ ∀ip. loc_prog_ok prog ∧ path ≠ [] ∧ (last path).b ≠ ip.b ∧ ip.f = (HD path).f ∧ ip.b = (HD path).b ∧ bip_less (HD path).i ip.i ∧ (∃inst. get_instr prog ip inst) ⇒ mem ip (front path) Proof ho_match_mp_tac good_path_ind >> rw [] >- metis_tac [] >> drule next_ips_same_func >> rw [] >> drule next_ips_still_leq >> simp [] >> disch_then (qspec_then `ip` mp_tac) >> simp [] >> impl_tac >- ( rw [get_instr_cases] >> `every (λi. ~terminator i) (front b.body) ∧ b.body ≠ []` by metis_tac [loc_prog_ok_def] >> fs [EVERY_MEM, MEM_EL] >> first_x_assum (qspec_then `el idx b.body` mp_tac) >> impl_tac >- ( qexists_tac `idx` >> conj_asm1_tac >- ( Cases_on `ip.i` >> fs [bip_less_def, LENGTH_FRONT] >> fs [get_instr_cases] >> rw [] >> rfs [] >> rw [] >> fs []) >> metis_tac [EL_FRONT, NULL_EQ]) >> metis_tac []) >> rw [] >- metis_tac [next_ips_same_func] >> Cases_on `path` >> fs [] QED Theorem dominates_same_block: ∀ip1 ip2 ip3. loc_prog_ok prog ∧ dominates prog ip1 ip3 ∧ ip1.f = ip2.f ∧ ip1.b = ip2.b ∧ ip3.b ≠ ip1.b ∧ bip_less ip1.i ip2.i ∧ (∃inst. get_instr prog ip2 instr) ⇒ dominates prog ip2 ip3 Proof rw [dominates_def] >> first_x_assum drule >> rw [] >> drule MEM_FRONT >> REWRITE_TAC [Once MEM_SPLIT] >> strip_tac >> `good_path prog (ip1'::l2)` by ( full_simp_tac std_ss [GSYM APPEND_ASSOC] >> full_simp_tac std_ss [Once good_path_append]) >> full_simp_tac std_ss [LAST_APPEND] >> drule good_path_find_ip >> disch_then (qspec_then `ip2` mp_tac) >> impl_tac >> rw [] >- (fs [ip_equiv_def] >> metis_tac []) >- ( `ip1'.f = (entry_ip ip3.f).f` suffices_by (fs [ip_equiv_def]) >> irule good_path_same_func >> qexists_tac `entry_ip ip3.f::path` >> qexists_tac `prog` >> rw_tac std_ss [] >- rw [] >- metis_tac [MEM]) >- fs [ip_equiv_def] >- metis_tac [ip_equiv_less2] >- metis_tac [] >- ( qexists_tac `ip2` >> rw [ip_equiv_refl] >> rw [FRONT_APPEND]) QED (* ----- Liveness ----- *) Definition live_def: live prog ip = { r | ∃path. good_path prog (ip::path) ∧ r ∈ uses prog (last (ip::path)) ∧ ∀ip2. ip2 ∈ set (front (ip::path)) ⇒ r ∉ image fst (assigns prog ip2) } End Theorem get_instr_live: ∀prog ip instr. get_instr prog ip instr ⇒ uses prog ip ⊆ live prog ip Proof rw [live_def, SUBSET_DEF] >> qexists_tac `[]` >> rw [Once good_path_cases] >> qexists_tac `instr` >> simp [] >> metis_tac [IN_DEF] QED Triviality set_rw: ∀s P. (∀x. x ∈ s ⇔ P x) ⇔ s = P Proof rw [] >> eq_tac >> rw [IN_DEF] >> metis_tac [] QED Theorem live_gen_kill: ∀prog ip ip'. live prog ip = BIGUNION {live prog ip' | ip' | ip' ∈ next_ips prog ip} DIFF image fst (assigns prog ip) ∪ uses prog ip Proof rw [live_def, EXTENSION] >> eq_tac >> rw [] >- ( Cases_on `path` >> fs [] >> rename1 `ip::ip2::path` >> qpat_x_assum `good_path _ _` mp_tac >> simp [Once good_path_cases] >> rw [] >> Cases_on `x ∈ uses prog ip` >> fs [] >> simp [set_rw, PULL_EXISTS] >> qexists_tac `ip2` >> qexists_tac `path` >> rw []) >- ( fs [] >> qexists_tac `ip'::path` >> rw [] >> simp [Once good_path_cases]) >- ( qexists_tac `[]` >> rw [] >> fs [Once good_path_cases, uses_cases, IN_DEF] >> metis_tac []) QED Theorem ssa_dominates_live_range_lem: ∀prog r ip1 ip2. is_ssa prog ∧ ip1.f = ip2.f ∧ r ∈ image fst (assigns prog ip1) ∧ r ∈ live prog ip2 ⇒ dominates prog ip1 ip2 Proof rw [dominates_def, is_ssa_def, live_def] >> `path ≠ [] ⇒ (last path).f = ip2.f` by ( rw [] >> irule good_path_same_func >> qexists_tac `ip2::path` >> rw [] >> Cases_on `path` >> fs [MEM_LAST] >> metis_tac []) >> first_x_assum drule >> rw [] >> first_x_assum (qspec_then `path'++path` mp_tac) >> impl_tac >- ( fs [LAST_DEF] >> rw [] >> fs [] >- ( simp_tac std_ss [GSYM APPEND, good_path_append] >> rw [] >- ( qpat_x_assum `good_path _ (_::_)` mp_tac >> qpat_x_assum `good_path _ (_::_)` mp_tac >> simp [Once good_path_cases] >> metis_tac []) >- ( simp [LAST_DEF] >> qpat_x_assum `good_path _ (_::_)` mp_tac >> qpat_x_assum `good_path _ (_::_)` mp_tac >> simp [Once good_path_cases] >> rw [] >> rw [] >> metis_tac [ip_equiv_next, ip_equiv_sym])) >- (Cases_on `path` >> fs [] >> metis_tac [ip_equiv_refl])) >> rw [] >> `ip1'.f = (last (entry_ip ip2.f::path')).f` by ( irule good_path_same_func >> qexists_tac `entry_ip ip2.f::path'` >> qexists_tac `prog` >> conj_tac >- ( Cases_on `path` >> full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND, APPEND_NIL, LAST_CONS] >- metis_tac [MEM_FRONT] >> full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND] >> fs [] >> rw [FRONT_DEF] >> fs [] >> metis_tac [ip_equiv_assigns]) >- metis_tac [MEM_LAST]) >> `ip2'.f = ip1.f` by fs [ip_equiv_def] >> `ip_equiv ip2' ip1` by metis_tac [] >> rw [] >> Cases_on `path` >> fs [] >> full_simp_tac std_ss [GSYM APPEND, FRONT_APPEND] >> fs [] >> rw [FRONT_DEF] >> fs [] >- (fs [FRONT_DEF] >> metis_tac [ip_equiv_sym, ip_equiv_trans]) >- (fs [ip_equiv_def, entry_ip_def] >> metis_tac [pc_component_equality]) >- (fs [FRONT_DEF] >> metis_tac [ip_equiv_sym, ip_equiv_trans]) >- ( `mem ip1' path' = mem ip1' (front path' ++ [last path'])` by metis_tac [APPEND_FRONT_LAST] >> fs [LAST_DEF] >> metis_tac [ip_equiv_trans, ip_equiv_assigns]) >- metis_tac [ip_equiv_assigns] >- metis_tac [ip_equiv_assigns] QED Theorem ssa_dominates_live_range: ∀prog r ip. is_ssa prog ∧ r ∈ uses prog ip ⇒ ∃ip1. ip1.f = ip.f ∧ r ∈ image fst (assigns prog ip1) ∧ ∀ip2. ip2.f = ip.f ∧ r ∈ live prog ip2 ⇒ dominates prog ip1 ip2 Proof rw [] >> drule ssa_dominates_live_range_lem >> rw [] >> fs [is_ssa_def] >> first_assum drule >> rw [] >> metis_tac [] QED Theorem reachable_dominates_same_func: ∀prog ip1 ip2. reachable prog ip2 ∧ dominates prog ip1 ip2 ⇒ ip1.f = ip2.f Proof rw [reachable_def, dominates_def] >> res_tac >> `ip1'.f = (last (entry_ip ip2.f::path)).f` suffices_by fs [ip_equiv_def] >> irule good_path_same_func >> metis_tac [MEM_LAST, MEM_FRONT] QED Theorem next_ips_reachable: ∀prog ip1 ip2. reachable prog ip1 ∧ ip2 ∈ next_ips prog ip1 ⇒ reachable prog ip2 Proof rw [] >> imp_res_tac next_ips_same_func >> fs [reachable_def] >> qexists_tac `path ++ [ip2]` >> simp_tac std_ss [GSYM APPEND, LAST_APPEND_CONS, LAST_CONS] >> simp [good_path_append] >> simp [Once good_path_cases, ip_equiv_refl] >> rw [] >- (fs [next_ips_cases, IN_DEF] >> metis_tac []) >- metis_tac [ip_equiv_next, ip_equiv_sym] QED (* ----- A theory of *dominator ordered* programs ------ *) (* A list of basic blocks is dominator ordered if each variable use occurs after * the assignment to that variable. We can also define a notion of variable * liveness that follows the list structure, rather than the CFG structure, and * show that for dominator ordered lists, the live set is empty at the entry * point *) Definition instrs_live_def: (instrs_live [] = ({}, {})) ∧ (instrs_live (i::is) = let (gen, kill) = instrs_live is in (instr_uses i ∪ (gen DIFF image fst (instr_assigns i)), (image fst (instr_assigns i) ∪ (kill DIFF instr_uses i)))) End Definition header_uses_def: (header_uses (Head phis land) = bigunion { phi_uses from_l p | from_l,p | mem p phis }) ∧ (header_uses Entry = {}) End Definition header_assigns_def: (header_assigns (Head phis land) = set (map (fst o phi_assigns) phis)) ∧ (header_assigns Entry = {}) End Definition linear_live_def: (linear_live [] = {}) ∧ (linear_live (b::bs) = let (gen,kill) = instrs_live b.body in header_uses b.h ∪ (gen ∪ (linear_live bs DIFF kill) DIFF header_assigns b.h)) End Definition linear_pc_less_def: linear_pc_less = $< LEX bip_less End Inductive lpc_get_instr: (∀i idx bs. i < length bs ∧ idx < length (el i bs).body ⇒ lpc_get_instr bs (i, Offset idx) (Inl (el idx (el i bs).body))) ∧ (∀i from_l phis bs landing. i < length bs ∧ (el i bs).h = Head phis landing ⇒ lpc_get_instr bs (i, Phi_ip from_l) (Inr (from_l, phis))) End Inductive lpc_assigns: (∀bs ip i r. lpc_get_instr bs ip (Inl i) ∧ r ∈ instr_assigns i ⇒ lpc_assigns bs ip r) ∧ (∀bs ip from_l phis r. lpc_get_instr bs ip (Inr (from_l, phis)) ∧ r ∈ set (map phi_assigns phis) ⇒ lpc_assigns bs ip r) End Inductive lpc_uses: (∀bs ip i r. lpc_get_instr bs ip (Inl i) ∧ r ∈ instr_uses i ⇒ lpc_uses bs ip r) ∧ (∀bs ip from_l phis r. lpc_get_instr bs ip (Inr (from_l, phis)) ∧ r ∈ BIGUNION (set (map (phi_uses from_l) phis)) ⇒ lpc_uses bs ip r) End Definition dominator_ordered_def: dominator_ordered p ⇔ ∀f d lip1 r. alookup p (Fn f) = Some d ∧ r ∈ lpc_uses (map snd d.blocks) lip1 ⇒ ∃lip2. linear_pc_less lip2 lip1 ∧ r ∈ image fst (lpc_assigns (map snd d.blocks) lip2) End Theorem instrs_kill_subset_assigns: snd (instrs_live is) ⊆ bigunion (image (λi. image fst (instr_assigns i)) (set is)) Proof Induct_on `is` >> rw [instrs_live_def] >> pairarg_tac >> rw [] >> fs [SUBSET_DEF] QED Theorem instrs_gen_subset_uses: fst (instrs_live is) ⊆ bigunion (image instr_uses (set is)) Proof Induct_on `is` >> rw [instrs_live_def] >> pairarg_tac >> rw [] >> fs [SUBSET_DEF] QED Theorem instrs_subset_assigns_subset_kill_gen: bigunion (image (λi. image fst (instr_assigns i)) (set is)) ⊆ snd (instrs_live is) ∪ fst (instrs_live is) Proof Induct_on `is` >> rw [instrs_live_def] >> pairarg_tac >> rw [] >> fs [SUBSET_DEF] >> rw [] >> metis_tac [] QED Theorem use_assign_in_gen_kill: ∀n is r. n < length is ∧ (r ∈ image fst (instr_assigns (el n is)) ∨ r ∈ instr_uses (el n is)) ⇒ r ∈ fst (instrs_live is) ∨ r ∈ snd (instrs_live is) Proof Induct_on `n` >> rw [] >> Cases_on `is` >> rw [] >> fs [] >> rw [instrs_live_def] >> pairarg_tac >> rw [] >> metis_tac [FST, SND, pair_CASES] QED Theorem instrs_live_uses: ∀is r. r ∈ fst (instrs_live is) ⇒ ∃i. i < length is ∧ r ∈ instr_uses (el i is) ∧ ∀j. j < i ⇒ r ∉ instr_uses (el j is) ∧ r ∉ image fst (instr_assigns (el j is)) Proof Induct >> rw [instrs_live_def] >> pairarg_tac >> fs [] >- (qexists_tac `0` >> rw []) >> rename1 `(i1::is)` >> Cases_on `r ∈ instr_uses i1` >- (qexists_tac `0` >> rw []) >> first_x_assum drule >> rw [] >> qexists_tac `Suc i` >> rw [] >> Cases_on `j` >> fs [] QED Theorem lpc_get_instr_cons: ∀b bs i bip. lpc_get_instr (b::bs) (i + 1, bip) = lpc_get_instr bs (i, bip) Proof rw [lpc_get_instr_cases, EXTENSION, IN_DEF, EL_CONS] >> `PRE (i + 1) = i` by decide_tac >> rw [ADD1] QED Theorem lpc_uses_cons: ∀b bs i bip. lpc_uses (b::bs) (i + 1, bip) = lpc_uses bs (i, bip) Proof rw [lpc_uses_cases, EXTENSION, IN_DEF, lpc_get_instr_cons] QED Theorem lpc_uses_0_head: ∀b bs. header_uses b.h = bigunion { lpc_uses (b::bs) (0, Phi_ip from_l) | from_l | T} Proof rw [EXTENSION, IN_DEF] >> rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >> Cases_on `b.h` >> rw [header_uses_def, MEM_MAP, PULL_EXISTS] >- metis_tac [] >> eq_tac >> rw [] >- ( qexists_tac `(\x'. ∃y. x' ∈ phi_uses from_l y ∧ mem y l)` >> qexists_tac `from_l` >> rw [] >> metis_tac []) >> metis_tac [] QED Theorem lpc_uses_0_body: ∀b bs. lpc_uses (b::bs) (0, Offset n) ⊆ fst (instrs_live b.body) ∪ snd (instrs_live b.body) Proof rw [SUBSET_DEF, IN_DEF] >> fs [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >> metis_tac [use_assign_in_gen_kill, IN_DEF] QED Theorem lpc_assigns_cons: ∀b bs i bip. lpc_assigns (b::bs) (i + 1, bip) = lpc_assigns bs (i, bip) Proof rw [lpc_assigns_cases, EXTENSION, IN_DEF, lpc_get_instr_cons] QED Theorem lpc_assigns_0_head: ∀b bs from_l. image fst (lpc_assigns (b::bs) (0, Phi_ip from_l)) = header_assigns b.h Proof rw [EXTENSION, Once IN_DEF] >> rw [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >> Cases_on `b.h` >> rw [header_assigns_def, MEM_MAP] >> metis_tac [] QED Theorem lpc_assigns_0_body: ∀b bs. image fst (lpc_assigns (b::bs) (0, Offset n)) ⊆ fst (instrs_live b.body) ∪ snd (instrs_live b.body) Proof rw [SUBSET_DEF, IN_DEF] >> fs [lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >> drule use_assign_in_gen_kill >> rw [] >> metis_tac [IN_DEF] QED Theorem linear_live_uses: ∀bs r. r ∈ linear_live bs ⇒ ∃lip. r ∈ lpc_uses bs lip ∧ ∀lip2. linear_pc_less lip2 lip ⇒ r ∉ lpc_uses bs lip2 ∧ r ∉ image fst (lpc_assigns bs lip2) Proof Induct >> rw [linear_live_def] >> rename1 `header_uses b.h` >> Cases_on `r ∈ header_uses b.h` >- ( fs [header_uses_def] >> pairarg_tac >> fs [] >> Cases_on `b.h` >> fs [header_uses_def] >> qexists_tac `(0, Phi_ip from_l)` >> fs [header_uses_def] >> conj_tac >- ( simp [IN_DEF] >> rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >> rw [MEM_MAP] >> metis_tac []) >- ( gen_tac >> simp [linear_pc_less_def, LEX_DEF] >> pairarg_tac >> simp [bip_less_def])) >> pairarg_tac >> Cases_on `r ∈ gen` >> fs [] >- ( `r ∈ fst (instrs_live b.body)` by metis_tac [FST] >> drule instrs_live_uses >> rw [] >> qexists_tac `(0, Offset i)` >> conj_tac >- ( simp [IN_DEF] >> rw [lpc_uses_cases, lpc_get_instr_cases, PULL_EXISTS] >> rw [MEM_MAP] >> metis_tac []) >- ( gen_tac >> strip_tac >> PairCases_on `lip2` >> fs [linear_pc_less_def, LEX_DEF_THM] >> Cases_on `lip21` >> fs [bip_less_def] >- ( Cases_on `b.h` >> fs [header_assigns_def, header_uses_def] >> simp [IN_DEF] >> rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >> fs [MEM_MAP] >> metis_tac [FST]) >- ( first_x_assum drule >> simp [IN_DEF] >> rw [lpc_uses_cases, lpc_assigns_cases, lpc_get_instr_cases, PULL_EXISTS] >> rw [IN_DEF]))) >- ( first_x_assum drule >> rw [] >> PairCases_on `lip` >> qexists_tac `lip0+1,lip1` >> simp [IN_DEF] >> conj_tac >- fs [lpc_uses_cons, IN_DEF] >> gen_tac >> disch_tac >> PairCases_on `lip2` >> Cases_on `lip20` >> fs [ADD1] >- ( Cases_on `lip21` >- ( rename1 `Phi_ip from_l` >> `r ∉ bigunion {lpc_uses (b::bs) (0,Phi_ip from_l) | from_l | T} ∧ r ∉ image fst (lpc_assigns (b::bs) (0,Phi_ip from_l))` by metis_tac [lpc_assigns_0_head, lpc_uses_0_head] >> fs [IN_DEF] >> metis_tac []) >- ( `r ∉ image fst (lpc_assigns (b::bs) (0,Offset n)) ∧ r ∉ lpc_uses (b::bs) (0,Offset n)` by metis_tac [IN_UNION, lpc_assigns_0_body, lpc_uses_0_body, FST, SND, SUBSET_DEF] >> fs [IN_DEF])) >- ( `linear_pc_less (n, lip21) (lip0, lip1)` by fs [linear_pc_less_def, LEX_DEF] >> first_x_assum drule >> rw [lpc_uses_cons, lpc_assigns_cons] >> fs [IN_DEF])) QED Theorem dominator_ordered_linear_live: ∀p f d. dominator_ordered p ∧ alookup p (Fn f) = Some d ⇒ linear_live (map snd d.blocks) = {} Proof rw [dominator_ordered_def] >> first_x_assum drule >> rw [EXTENSION] >> CCONTR_TAC >> fs [] >> drule linear_live_uses >> rw [] >> metis_tac [] QED Definition block_assigns_def: block_assigns (l, b) = header_assigns b.h ∪ image fst (bigunion (image instr_assigns (set b.body))) End Definition block_uses_def: block_uses (l, b) = header_uses b.h ∪ bigunion (image instr_uses (set b.body)) End Definition block_order_def: block_order bs = tc { (b1, b2) | fst b1 ≠ fst b2 ∧ mem b1 bs ∧ mem b2 bs ∧ (∃r. r ∈ block_assigns b1 ∧ r ∈ block_uses b2) } End Theorem prog_ok_distinct_lem: loc_prog_ok p ∧ alookup p f = Some d ⇒ all_distinct (map fst d.blocks) Proof rw [loc_prog_ok_def, EVERY_MEM] >> drule ALOOKUP_MEM >> rw [] >> res_tac >> fs [] QED Theorem block_order_dominates: ∀b1 b2. (b1,b2) ∈ block_order d.blocks ⇒ loc_prog_ok prog ∧ is_ssa prog ∧ alookup prog f = Some d ⇒ ∃ip1 ip2. dominates prog ip1 ip2 ∧ ip1.f = f ∧ ip2.f = f ∧ ip1.b = fst b1 ∧ ip2.b = fst b2 ∧ fst b1 ≠ fst b2 ∧ (∃i2. get_instr prog ip2 i2) Proof simp [block_order_def] >> ho_match_mp_tac tc_ind >> rw [] >- ( fs [is_ssa_def] >> `∃ip1. r ∈ uses prog ip1 ∧ ip1.f = f ∧ ip1.b = fst b2` by ( simp [Once IN_DEF, uses_cases] >> Cases_on `b2` >> fs [block_uses_def] >> fs [get_instr_cases, PULL_EXISTS] >- ( rename1 `_ ∈ header_uses b.h` >> Cases_on `b.h` >> fs [header_uses_def] >> rw [] >> rename1 `mem (l1, _) _` >> qexists_tac `<| f := f; b := l1; i := Phi_ip from_l |>` >> rw [] >> qexists_tac `l` >> qexists_tac `phi_uses from_l p` >> qexists_tac `b` >> rw [MEM_MAP] >> metis_tac [ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, prog_ok_distinct_lem]) >- ( fs [MEM_EL] >> rw [] >> rename [`n1 < length b.body`, `(l1, _) = el _ _`] >> qexists_tac `<| f := f; b := l1; i := Offset n1 |>` >> rw [] >> metis_tac [ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, EL_MEM, prog_ok_distinct_lem])) >> first_x_assum drule >> rw [] >> qexists_tac `ip2` >> qexists_tac `ip1` >> rw [] >- ( rename1 `rt ∈ assigns _ _` >> `∃ip3 t. (fst rt, t) ∈ assigns prog ip3 ∧ ip3.f = ip1.f ∧ ip3.b = fst b1` by ( simp [Once IN_DEF, assigns_cases] >> Cases_on `b1` >> fs [block_assigns_def] >> fs [get_instr_cases, PULL_EXISTS] >- ( rename1 `_ ∈ header_assigns b.h` >> Cases_on `b.h` >> fs [header_assigns_def] >> rw [] >> rename1 `mem (l1, _) _` >> fs [MEM_MAP] >> qexists_tac `<| f := ip1.f; b := l1; i := Phi_ip from_l |>` >> rw [] >> qexists_tac `SND (phi_assigns y)` >> qexists_tac `l` >> qexists_tac `b` >> qexists_tac `o'` >> rw [] >> metis_tac [FST, ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, SND, prog_ok_distinct_lem]) >- ( fs [MEM_EL] >> rw [] >> rename [`n1 < length b.body`, `(l1, _) = el _ _`] >> qexists_tac `<| f := ip1.f; b := l1; i := Offset n1 |>` >> rw [] >> qexists_tac `snd x` >> rw [] >> metis_tac [ALOOKUP_ALL_DISTINCT_MEM, loc_prog_ok_def, EL_MEM, FST, SND, prog_ok_distinct_lem])) >> metis_tac [ip_equiv_def, FST]) >- (fs [uses_cases, IN_DEF] >> metis_tac [])) >- ( first_x_assum drule >> first_x_assum drule >> rw [] >> Cases_on `ip1.b = ip2.b ∨ ip1'.b = ip2'.b` >- metis_tac [] >> qexists_tac `ip1` >> qexists_tac `ip2'` >> Cases_on `bip_less ip2.i ip1'.i` >- ( `dominates prog ip2 ip1'` by metis_tac [same_block_dominates, loc_prog_ok_def] >> rw [] >- metis_tac [dominates_trans] >- ( CCONTR_TAC >> fs [] >> Cases_on `bip_less ip2'.i ip1.i` >- ( `dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >> metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >> Cases_on `bip_less ip1.i ip2'.i` >- ( `dominates prog ip2' ip2` by metis_tac [dominates_same_block] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def]) >- ( `dominates prog ip1' ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def])) >- metis_tac []) >> Cases_on `bip_less ip1'.i ip2.i` >- ( `dominates prog ip2 ip2'` by metis_tac [dominates_same_block] >> rw [] >- metis_tac [dominates_trans] >- ( CCONTR_TAC >> fs [] >> Cases_on `bip_less ip2'.i ip1.i` >- ( `dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >> metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >> Cases_on `bip_less ip1.i ip2'.i` >- ( `dominates prog ip2' ip2` by metis_tac [dominates_same_block] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def]) >- ( `dominates prog ip2 ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def])) >- metis_tac []) >- ( `ip_equiv ip1' ip2` by metis_tac [bip_less_tri] >> `dominates prog ip1 ip2'` by metis_tac [dominates_trans, ip_equiv_sym, ip_equiv_dominates] >> rw [] >- ( CCONTR_TAC >> fs [] >> Cases_on `bip_less ip2'.i ip1.i` >- ( `dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >> metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >> Cases_on `bip_less ip1.i ip2'.i` >- ( `dominates prog ip2' ip2` by metis_tac [dominates_same_block] >> `dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, ip_equiv_sym] >> metis_tac [dominates_antisym, is_ssa_def]) >- ( `dominates prog ip2' ip2` by metis_tac [ip_equiv_dominates2, bip_less_tri] >> `dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, bip_less_tri] >> metis_tac [dominates_antisym, is_ssa_def])) >- metis_tac [])) QED Theorem block_order_po: ∀prog f d. loc_prog_ok prog ∧ is_ssa prog ∧ alookup prog f = Some d ⇒ partial_order (rc (block_order d.blocks) (set d.blocks)) (set d.blocks) Proof rw [partial_order_def] >- (rw [block_order_def, domain_def, SUBSET_DEF, rc_def] >> drule tc_domain_range >> rw [domain_def]) >- (rw [block_order_def, range_def, SUBSET_DEF, rc_def] >> rw [] >> drule tc_domain_range >> rw [range_def]) >- metis_tac [block_order_def, transitive_rc, tc_transitive] >- metis_tac [rc_is_reflexive] >- ( simp [antisym_rc] >> rw [antisym_def] >> pop_assum mp_tac >> drule block_order_dominates >> disch_then drule >> simp [] >> disch_then drule >> rw [] >> drule block_order_dominates >> disch_then drule >> simp [] >> disch_then drule >> rw [] >> CCONTR_TAC >> Cases_on `bip_less ip2.i ip1'.i` >- ( `dominates prog ip2 ip1'` by metis_tac [same_block_dominates, loc_prog_ok_def] >> Cases_on `bip_less ip2'.i ip1.i` >- ( `dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >> metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >> Cases_on `bip_less ip1.i ip2'.i` >- ( `dominates prog ip2' ip2` by metis_tac [dominates_same_block] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def]) >- ( `dominates prog ip1' ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def])) >> Cases_on `bip_less ip1'.i ip2.i` >- ( `dominates prog ip2 ip2'` by metis_tac [dominates_same_block] >> Cases_on `bip_less ip2'.i ip1.i` >- ( `dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >> metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >> Cases_on `bip_less ip1.i ip2'.i` >- ( `dominates prog ip2' ip2` by metis_tac [dominates_same_block] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def]) >- ( `dominates prog ip2 ip1` by metis_tac [ip_equiv_dominates, bip_less_tri] >> metis_tac [dominates_antisym, dominates_trans, is_ssa_def])) >- ( `ip_equiv ip1' ip2` by metis_tac [bip_less_tri] >> `dominates prog ip1 ip2'` by metis_tac [dominates_trans, ip_equiv_sym, ip_equiv_dominates] >> Cases_on `bip_less ip2'.i ip1.i` >- ( `dominates prog ip2' ip1` by metis_tac [same_block_dominates, loc_prog_ok_def] >> metis_tac [dominates_trans, dominates_antisym, is_ssa_def]) >> Cases_on `bip_less ip1.i ip2'.i` >- ( `dominates prog ip2' ip2` by metis_tac [dominates_same_block] >> `dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, ip_equiv_sym] >> metis_tac [dominates_antisym, is_ssa_def]) >- ( `dominates prog ip2' ip2` by metis_tac [ip_equiv_dominates2, bip_less_tri] >> `dominates prog ip2 ip2'` by metis_tac [ip_equiv_dominates2, bip_less_tri] >> metis_tac [dominates_antisym, is_ssa_def]))) QED Theorem assigns_weak: ∀l d p ip r. ~mem l (map fst p) ∧ r ∈ assigns p ip ⇒ r ∈ assigns ((l,d)::p) ip Proof rw [assigns_cases, IN_DEF, get_instr_cases, PULL_EXISTS] >> imp_res_tac ALOOKUP_MEM >> fs [LIST_TO_SET_MAP] >> metis_tac [FST] QED Theorem uses_weak: ∀l d p ip r. ip.f ≠ l ⇒ uses ((l,d)::p) ip = uses p ip Proof rw [uses_cases, EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS] QED Theorem assigns_weak2: ∀l d p ip r. ip.f ≠ l ⇒ assigns ((l,d)::p) ip = assigns p ip Proof rw [assigns_cases, EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS] QED Theorem good_path_weak: ∀l d p ip path. ip.f ≠ l ⇒ good_path ((l,d)::p) (ip::path) = good_path p (ip::path) Proof Induct_on `path` >> rw [] >> ONCE_REWRITE_TAC [good_path_cases] >> rw [] >- rw [EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS] >> rename1 `good_path _ (p1::_)` >> Cases_on `p1.f ≠ l` >- ( first_x_assum drule >> rw [] >> eq_tac >> rw [] >> fs [next_ips_cases, EXTENSION, IN_DEF, get_instr_cases, PULL_EXISTS] >> rw [] >> metis_tac []) >- metis_tac [next_ips_same_func] QED Theorem dominates_weak: ∀l d p ip1 ip2. ip1.f ≠ l ⇒ dominates ((l,d)::p) ip2 ip1 = dominates p ip2 ip1 Proof rw [dominates_def, EXTENSION, IN_DEF] >> `(entry_ip ip1.f).f = ip1.f` by rw [entry_ip_def] >> metis_tac [good_path_weak] QED Theorem uses_good_ip: ∀r prog ip. r ∈ uses prog ip ⇒ mem ip.f (map fst prog) Proof rw [uses_cases, IN_DEF, get_instr_cases] >> imp_res_tac ALOOKUP_MEM >> fs [LIST_TO_SET_MAP] >> metis_tac [FST] QED Theorem is_ssa_weak: ∀l d p. ~mem l (map fst p) ∧ is_ssa ((l,d)::p) ⇒ is_ssa p Proof rw [is_ssa_def] >- (first_x_assum irule >> rw [PULL_EXISTS] >> metis_tac [assigns_weak]) >- ( drule uses_good_ip >> rw [] >> last_x_assum (qspec_then `ip1` mp_tac) >> rw [] >> `ip1.f ≠ l` by metis_tac [MEM_MAP] >> fs [uses_weak, assigns_weak2] >> first_x_assum drule >> rw [] >> qexists_tac `ip2` >> rw [] >> rfs [] >> metis_tac [assigns_weak2, dominates_weak]) >- ( `get_instr ((l,d)::p) ip i` by (fs [get_instr_cases, MEM_MAP] >> rw [] >> metis_tac [ALOOKUP_MEM, FST]) >> first_x_assum drule >> rw [reachable_def] >> qexists_tac `path` >> rw [] >> `(entry_ip ip.f).f ≠ l` suffices_by metis_tac [good_path_weak] >> rw [entry_ip_def] >> fs [get_instr_cases, MEM_MAP] >> CCONTR_TAC >> fs [] >> rw [] >> metis_tac [FST, ALOOKUP_MEM]) QED Theorem loc_prog_ok_weak: ∀l d p. ~mem l (map fst p) ∧ loc_prog_ok ((l,d)::p) ⇒ loc_prog_ok p Proof rw [loc_prog_ok_def, MEM_MAP] >> metis_tac [ALOOKUP_MEM, FST] QED Triviality in_uncurry: (x,y) ∈ UNCURRY R ⇔ R x y Proof rw [IN_DEF, UNCURRY_DEF] QED Theorem sorted_all_distinct_idx: ∀R l. all_distinct l ∧ transitive R ∧ reflexive R ∧ antisym (rrestrict (UNCURRY R) (set l)) ⇒ (SORTED R l ⇔ (∀i j. i < length l ∧ j < length l ⇒ (R (el i l) (el j l) ⇔ i ≤ j))) Proof Induct_on `l` >> rw [sortingTheory.SORTED_EQ] >> `antisym (rrestrict (UNCURRY R) (set l))` by (fs [antisym_def] >> rw [in_rrestrict]) >> eq_tac >> rw [] >- ( Cases_on `i` >> Cases_on `j` >> rw [] >> fs [] >- fs [relationTheory.reflexive_def] >- (first_x_assum irule >> rw [MEM_EL] >> metis_tac []) >- ( fs [antisym_def] >> last_x_assum (qspecl_then [`h`, `el n l`] mp_tac) >> simp [in_rrestrict, in_uncurry] >> metis_tac [MEM_EL])) >- (first_x_assum (qspecl_then [`Suc i`, `Suc j`] mp_tac) >> rw []) >- ( fs [MEM_EL] >> rw [] >> first_x_assum (qspecl_then [`0`, `Suc n`] mp_tac) >> rw []) QED Theorem lpc_uses_to_uses: ∀r bs lip prog f d. r ∈ lpc_uses (map snd bs) lip ∧ alookup prog (Fn f) = Some d ∧ PERM d.blocks bs ∧ all_distinct (map fst (d.blocks)) ⇒ r ∈ uses prog <| f := Fn f; b := fst (el (fst lip) bs); i := snd lip |> ∧ fst lip < length bs Proof rw [IN_DEF, uses_cases, lpc_uses_cases, get_instr_cases, PULL_EXISTS, lpc_get_instr_cases] >> rw [] >- ( qexists_tac `el i' (map snd bs)` >> rw [] >> irule ALOOKUP_ALL_DISTINCT_MEM >> rw [] >> drule sortingTheory.MEM_PERM >> rw [MEM_EL, EL_MAP] >> metis_tac [pair_CASES, FST, SND]) >- ( qexists_tac `phis` >> qexists_tac `el i (map snd bs)` >> rw [] >> qexists_tac `s` >> rw [] >> irule ALOOKUP_ALL_DISTINCT_MEM >> rw [] >> drule sortingTheory.MEM_PERM >> rw [MEM_EL, EL_MAP] >> metis_tac [pair_CASES, FST, SND]) QED Theorem assigns_to_block_assigns: ∀prog ip d b r l. r ∈ assigns prog ip ∧ alookup prog ip.f = Some d ∧ alookup d.blocks ip.b = Some b ⇒ fst r ∈ block_assigns (l:label option, b) Proof rw [] >> qpat_x_assum `_ ∈ assigns _ _` mp_tac >> simp [Once IN_DEF] >> rw [assigns_cases, get_instr_cases, PULL_EXISTS, block_assigns_def] >- ( disj2_tac >> qexists_tac `r` >> HINT_EXISTS_TAC >> metis_tac [MEM_EL]) >- ( rw [header_assigns_def, MEM_MAP] >> disj1_tac >> fs [MEM_MAP] >> rw [] >> metis_tac []) QED Theorem assigns_to_lpc_assigns: ∀prog ip d r idx (bs : (label option # block) list). r ∈ assigns prog ip ∧ alookup prog ip.f = Some d ∧ alookup d.blocks ip.b = Some (snd (el idx bs)) ∧ idx < length bs ⇒ r ∈ lpc_assigns (map snd bs) (idx, ip.i) Proof rw [assigns_cases, get_instr_cases, PULL_EXISTS, block_assigns_def, lpc_assigns_cases, IN_DEF, lpc_get_instr_cases] >> fs [] >> rw [] >> fs [] >> rw [EL_MAP] QED Theorem uses_to_block_uses: ∀prog ip d b r l. r ∈ uses prog ip ∧ alookup prog ip.f = Some d ∧ alookup d.blocks ip.b = Some b ⇒ r ∈ block_uses (l:label option, b) Proof rw [] >> qpat_x_assum `_ ∈ uses _ _` mp_tac >> simp [Once IN_DEF] >> rw [uses_cases, get_instr_cases, PULL_EXISTS, block_uses_def] >- ( disj2_tac >> metis_tac [MEM_EL]) >- ( rw [header_uses_def, MEM_MAP] >> disj1_tac >> fs [MEM_MAP] >> rw [] >> metis_tac []) QED Theorem same_block_assigns_less_uses: reachable prog ip1 ∧ dominates prog ip2 ip1 ∧ ip1.b = ip2.b ∧ (?i. get_instr prog ip1 i) ∧ (∀fname dec. alookup prog fname = Some dec ⇒ every (λb. fst b = None ⇔ (snd b).h = Entry) dec.blocks) ⇒ bip_less ip2.i ip1.i Proof rw [] >> CCONTR_TAC >> fs [] >> `ip1.f = ip2.f` by metis_tac [reachable_dominates_same_func] >> `ip_equiv ip1 ip2 ∨ bip_less ip1.i ip2.i` by metis_tac [bip_less_tri] >- metis_tac [ip_equiv_dominates2, dominates_irrefl, ip_equiv_sym] >> metis_tac [dominates_antisym, same_block_dominates] QED Theorem ssa_to_dominator_ordered_lem: ∀p1. loc_prog_ok p1 ∧ is_ssa p1 ∧ all_distinct (map fst p1) ∧ every (λ(l,d). all_distinct (map fst d.blocks)) p1 ⇒ ∃p2. list_rel (\(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ∧ dominator_ordered p2 Proof Induct_on `p1` >> rw [] >- rw [dominator_ordered_def] >> `is_ssa p1` by metis_tac [is_ssa_weak, pair_CASES, FST] >> `loc_prog_ok p1` by metis_tac [loc_prog_ok_weak, pair_CASES, FST] >> fs [PULL_EXISTS] >> rename1 `is_ssa (x::_)` >> `?l d. x = (l,d)` by metis_tac [pair_CASES] >> `partial_order (rc (block_order d.blocks) (set d.blocks)) (set d.blocks)` by metis_tac [block_order_po, ALOOKUP_def] >> rw [] >> `finite (set d.blocks)` by rw [] >> drule finite_linear_order_of_finite_po >> disch_then drule >> rw [] >> drule finite_linear_order_to_list >> disch_then drule >> rw [] >> rename1 `set _ = set bs` >> qexists_tac `(l, d with blocks := bs)` >> qexists_tac `p2` >> conj_asm1_tac >> rw [] >> fs [] >- (irule sortingTheory.PERM_ALL_DISTINCT >> rw [] >> metis_tac [ALL_DISTINCT_MAP]) >> qmatch_assum_abbrev_tac `SORTED R _` >> `transitive R ∧ reflexive R ∧ antisym (rrestrict (UNCURRY R) (set bs))` by ( fs [linear_order_def, transitive_def, reflexive_def, SUBSET_DEF, antisym_def, domain_def, range_def, in_rrestrict] >> rw [Abbr `R`, relationTheory.transitive_def, relationTheory.reflexive_def] >> fs [IN_DEF] >> metis_tac []) >> drule sorted_all_distinct_idx >> disch_then drule >> rw [] >> fs [dominator_ordered_def] >> rw [PULL_EXISTS] >> fs [] >- ( drule lpc_uses_to_uses >> disch_then (qspecl_then [`(Fn f,d)::p1`, `f`, `d`] mp_tac) >> rw [] >> qmatch_assum_abbrev_tac `_ ∈ uses prog ip1` >> `?ip2. ip2.f = Fn f ∧ r ∈ image fst (assigns prog ip2) ∧ dominates prog ip2 ip1` by (fs [is_ssa_def] >> last_x_assum drule >> rw [Abbr `ip1`]) >> `?idx. idx < length bs ∧ alookup d.blocks ip2.b = Some (snd (el idx bs)) ∧ fst (el idx bs) = ip2.b` by ( fs [assigns_cases, IN_DEF, get_instr_cases, Abbr `prog`] >> rfs [] >> drule ALOOKUP_MEM >> drule sortingTheory.MEM_PERM >> rw [MEM_EL] >> metis_tac [FST, SND]) >> `?t. (r, t) ∈ assigns prog ip2` by metis_tac [IN_IMAGE, pair_CASES, FST] >> drule assigns_to_block_assigns >> rw [Abbr `prog`] >> qexists_tac `(idx, ip2.i)` >> qexists_tac `(r, t)` >> rw [] >- ( `(el idx bs, el (fst lip1) bs) ∈ rc (block_order d.blocks) (set d.blocks)` by ( simp [rc_def, block_order_def, EL_MEM] >> drule uses_to_block_uses >> simp [Abbr `ip1`] >> `alookup d.blocks (fst (el (fst lip1) bs)) = Some (snd (el (fst lip1) bs))` by ( qmatch_goalsub_abbrev_tac `(fst b)` >> `mem b bs` by (rw [Abbr `b`, MEM_EL] >> metis_tac []) >> metis_tac [ALOOKUP_ALL_DISTINCT_MEM, PAIR]) >> rw [METIS_PROVE [] ``a ∨ b ⇔ ~b ⇒ a``] >> simp [Once tc_cases] >> disj1_tac >> rw [MEM_EL] >- ( `all_distinct (map fst bs)` by ( irule ALL_DISTINCT_MAP_INJ >> rw [] >> `mem x d.blocks ∧ mem y d.blocks` by metis_tac [sortingTheory.MEM_PERM] >> metis_tac [PAIR, ALOOKUP_ALL_DISTINCT_MEM, optionTheory.SOME_11]) >> metis_tac [PAIR, optionTheory.SOME_11]) >> metis_tac [PAIR, FST]) >> rw [] >> `idx ≤ fst lip1` by ( `R (el idx bs) (el (fst lip1) bs)` suffices_by metis_tac [] >> fs [Abbr `R`, SUBSET_DEF, rc_def] >> metis_tac []) >> PairCases_on `lip1` >> rw [linear_pc_less_def, LEX_DEF_THM] >> fs [LESS_OR_EQ] >> rw [] >> `reachable ((Fn f,d)::p1) ip1` by ( fs [is_ssa_def] >> first_x_assum irule >> fs [uses_cases, IN_DEF] >> metis_tac []) >> drule same_block_assigns_less_uses >> disch_then drule >> simp [Abbr `ip1`] >> disch_then irule >> rw [] >> fs [uses_cases, IN_DEF, loc_prog_ok_def] >> metis_tac []) >- (drule assigns_to_lpc_assigns >> simp [])) >- metis_tac [] QED Theorem prog_ok_to_loc_prog_ok: ∀p. prog_ok p ⇒ loc_prog_ok p Proof rw [prog_ok_def, loc_prog_ok_def] >> metis_tac [] QED Theorem alookup_perm_blocks: ∀p1 p2. list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ⇒ (∀l d. alookup p2 l = Some d ⇒ ?d'. alookup p1 l = Some d' ∧ PERM d'.blocks d.blocks) ∧ (∀l d. alookup p1 l = Some d ⇒ ?d'. alookup p2 l = Some d' ∧ PERM d.blocks d'.blocks) ∧ (map fst p1 = map fst p2) Proof Induct_on `p1` >> rw [] >> pairarg_tac >> fs [] >> pairarg_tac >> fs [] >> rw [] >> rw [] >> fs [] >> metis_tac [] QED Theorem alookup_perm: ∀b1 b2. PERM b1 b2 ∧ all_distinct (map fst b1) ⇒ alookup b1 = alookup b2 Proof rw [] >> irule ALOOKUP_ALL_DISTINCT_PERM_same >> rw [sortingTheory.PERM_MAP, sortingTheory.PERM_LIST_TO_SET] QED Theorem get_instr_perm_blocks: every (\(l,d). all_distinct (map fst d.blocks)) p1 ∧ list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ⇒ get_instr p1 = get_instr p2 Proof rw [get_instr_cases, FUN_EQ_THM] >> eq_tac >> rw [] >> drule alookup_perm_blocks >> rw [] >> first_x_assum drule >> rw [] >> rw [] >> `all_distinct (map fst d.blocks)` by ( fs [EVERY_MEM] >> imp_res_tac ALOOKUP_MEM >> res_tac >> fs [] >> metis_tac [sortingTheory.ALL_DISTINCT_PERM, sortingTheory.PERM_MAP]) >> metis_tac [alookup_perm, sortingTheory.PERM_SYM] QED Theorem next_ips_perm_blocks: every (\(l,d). all_distinct (map fst d.blocks)) p1 ∧ list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ⇒ next_ips p1 = next_ips p2 Proof rw [FUN_EQ_THM, next_ips_cases] >> metis_tac [get_instr_perm_blocks] QED Theorem good_path_perm_blocks: ∀p1 p2. every (\(l,d). all_distinct (map fst d.blocks)) p1 ∧ list_rel (λ(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ⇒ good_path p1 = good_path p2 Proof rw [] >> simp [FUN_EQ_THM] >> Induct >> rw [] >> ONCE_REWRITE_TAC [good_path_cases] >> rw [] >> metis_tac [next_ips_perm_blocks, get_instr_perm_blocks] QED Theorem ssa_to_dominator_ordered: ∀p1. prog_ok p1 ∧ is_ssa p1 ⇒ ∃p2. list_rel (\(l1,d1) (l2,d2). l1 = l2 ∧ PERM d1.blocks d2.blocks) p1 p2 ∧ dominator_ordered p2 ∧ prog_ok p2 ∧ is_ssa p2 Proof rw [] >> drule prog_ok_to_loc_prog_ok >> rw [] >> drule ssa_to_dominator_ordered_lem >> simp [] >> impl_tac >- ( fs [prog_ok_def] >> rw [EVERY_MEM] >> pairarg_tac >> fs [] >> rw [] >> metis_tac [ALOOKUP_ALL_DISTINCT_MEM]) >> rw [] >> qexists_tac `p2` >> rw [] >> `every (λ(l,d). all_distinct (map fst d.blocks)) p1` by fs [prog_ok_def] >> drule get_instr_perm_blocks >> disch_then drule >> rw [] >> drule good_path_perm_blocks >> disch_then drule >> rw [] >- ( drule alookup_perm_blocks >> rw [] >> fs [prog_ok_def] >> conj_tac >- ( rw [] >> rpt (last_x_assum (qspec_then `fname` mp_tac)) >> rw [] >> metis_tac [alookup_perm, sortingTheory.MEM_PERM, prog_ok_distinct_lem]) >> conj_tac >- metis_tac [alookup_perm, sortingTheory.MEM_PERM, prog_ok_distinct_lem] >> conj_tac >- (fs [EVERY_MEM] >> metis_tac [alookup_perm, sortingTheory.MEM_PERM]) >> conj_tac >- ( rfs [LIST_REL_EL_EQN, EVERY_EL] >> rw [] >> pairarg_tac >> fs [] >> rpt (first_x_assum (qspec_then `n` mp_tac)) >> rw [] >> pairarg_tac >> fs [] >> metis_tac [sortingTheory.ALL_DISTINCT_PERM, sortingTheory.PERM_MAP]) >> conj_tac >- metis_tac [alookup_perm, sortingTheory.MEM_PERM] >- metis_tac [alookup_perm, sortingTheory.MEM_PERM]) >- ( fs [is_ssa_def, IN_DEF, uses_cases, assigns_cases, reachable_def, dominates_def] >> rw [] >> first_x_assum irule >> metis_tac []) QED export_theory ();